

Understanding MySQL Internals

Other resources from O’Reilly

Related titles The Art of SQL

Database in Depth

High Performance MySQL

Learning MySQL

Learning SQL

MySQL Cookbook™

MySQL Stored Procedure
Programming

Optimizing Oracle
Performance

The Relational Database
Dictionary

SQL Cookbook™

SQL Tuning

Understanding the Linux
Kernel

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Understanding MySQL
Internals

Sasha Pachev

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Understanding MySQL Internals
by Sasha Pachev

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Rachel Monaghan
Copyeditor: Derek Di Matteo
Proofreader: Rachel Monaghan

Indexer: Johnna VanHoose Dinse
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

April 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Understanding MySQL Internals, the image of a banded broadbill, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00957-7

ISBN-13: 978-0-596-00957-1

[C]

This book is dedicated to my wife, Sarah, and my

children Benjamin, Jennifer, Julia, Joseph, and

Jacob.

vii

Table of Contents

Preface . xi

1. MySQL History and Architecture . 1
MySQL History 1
MySQL Architecture 4

2. Nuts and Bolts of Working with the MySQL Source Code 19
Unix Shell 19
BitKeeper 19
Preparing the System to Build MySQL from BitKeeper Tree 22
Building MySQL from BitKeeper Tree 24
Building from Source Distribution 25
Installing MySQL into a System Directory 26
Source Code Directory Layout 27
Preparing the System to Run MySQL in a Debugger 28
Debugger-Guided Source Tour 29
Basics of Working with gdb 30
Finding Things in the Source 33
Interesting Breakpoints and Variables 34
Making a Source Modification 36
Coding Guidelines 37
Keeping Your BitKeeper Repository Up to Date 39
Submitting a Patch 40

viii | Table of Contents

3. Core Classes, Structures, Variables, and APIs . 41
THD 41
NET 46
TABLE 48
Field 51
Utility API Calls 54
Preprocessor Macros 57
Global Variables 59

4. Client/Server Communication . 62
Protocol Overview 62
Packet Format 62
Relationship Between MySQL Protocol and OS Layer 63
Authenticating Handshake 64
Command Packet 69
Server Responses 74

5. Configuration Variables . 80
Configuration Variables Tutorial 80
Interesting Aspects of Specific Configuration Variables 88

6. Thread-Based Request Handling . 107
Threads Versus Processes 107
Implementation of Request Handling 109
Thread Programming Issues 113

7. The Storage Engine Interface . 119
The handler Class 120
Adding a Custom Storage Engine to MySQL 136

8. Concurrent Access and Locking . 161
Table Lock Manager 162

9. Parser and Optimizer . 167
Parser 167
Optimizer 170

Table of Contents | ix

10. Storage Engines . 194
Shared Aspects of Architecture 195
InnoDB 202
Memory (Heap) 204
MyISAM Merge 205
NDB 205
Archive 206
Federated 207

11. Transactions . 208
Overview of Transactional Storage Engine Implementation 208
Implementing the handler Subclass 209
Defining the handlerton 212
Working with the Query Cache 213
Working with the Replication Binary Log 214
Avoiding Deadlocks 214

12. Replication . 216
Overview 216
Statement-Based Versus Row-Based Replication 217
Two-Threaded Slave 218
Multi-Master 219
SQL Commands to Help Understand Replication 220
Binary Log Format 223
Creating a Custom Replication Utility 227

Index . 229

xi

Preface1

In the summer of 2003, somebody on the MySQL mailing list proposed a book about
MySQL internals. As I read the email, I realized that I had the background to write
such a book, but I had just finished writing my first book and was not looking for-
ward to writing another. I tried to talk myself out of the responsibility, saying to
myself nobody would ever publish a book so technical and specialized. There simply
would not be enough of an audience for it.

Then I thought of Understanding the Linux Kernel and Linux Device Drivers by
O’Reilly. That took away my excuse. I realized the door was open and I was stand-
ing in the doorway, but my inertia was keeping something good from happening. I
thought about a passage in the Book of Mormon that says “a natural man is an
enemy to God,” and the principle behind it. If you drift along, seeking only the plea-
sure of the moment and staying safely within your natural comfort zone, you do not
accomplish much. Good things happen when you push yourself outside of your
comfort zone, doing what is difficult but what you know deep inside is the right
thing to do. I wrote an email with a proposal to O’Reilly.

Interestingly enough, my editor happened to be Andy Oram, who also participated
in the publication of Understanding the Linux Kernel and Linux Device Drivers. He
and I worked together on this book, and I appreciate his help very much. I felt that
his strengths very well compensated for my weaknesses.

The book presented a number of challenges. Writing about the internals of an appli-
cation means approaching it as a developer rather than just a user or an administra-
tor. It requires a deeper level of understanding. Although I had worked on the
MySQL source code extensively, I found myself doing a lot of research to figure out
the gory details of algorithms, the purposes of functions and classes, the reasons for
certain decisions, and other matters relevant to this book. In addition, as I was writ-
ing the book, MySQL developers were writing new code. It was not easy to keep up.
And while the book was being written, I had to do other work to feed my growing
family. Fortunately, a good portion of that work involved projects that dealt with
MySQL internals, allowing me to stay on top of the game.

xii | Preface

Nevertheless, the challenges were worth it. Growth comes through challenges, and I
feel it did for me in this process. Now that I have finished the book, I have a better
view of the design of MySQL as a whole, and a better knowledge of its dark and not
so dark parts. It is my hope that the reader will experience a similar growth.

How This Book Is Organized
Chapter 1, MySQL History and Architecture

Introduces the major modules in the source code and their purpose.

Chapter 2, Nuts and Bolts of Working with the MySQL Source Code
Tells you how to download the source code and build a server from scratch.

Chapter 3, Core Classes, Structures, Variables, and APIs
Lists the basic data structures, functions, and macros you need for later reference.

Chapter 4, Client/Server Communication
Lays out the formats of the data sent between client and server, and the main
functions that perform the communication.

Chapter 5, Configuration Variables
Discusses how MySQL handles configuration in general, as well as the effects of
many particular configuration variables, and shows you a framework for adding
a new configuration variable.

Chapter 6, Thread-Based Request Handling
Explains MySQL’s reasons for using threads and the main variables, such as
locks, related to threads.

Chapter 7, The Storage Engine Interface
Describes the relation of individual storage engines (formerly known as table
types) to the MySQL core, and shows you a framework for adding a new storage
engine.

Chapter 8, Concurrent Access and Locking
Explains the different types of locks available in MySQL, and how each storage
engine uses locks.

Chapter 9, Parser and Optimizer
Explains the major activities that go into optimizing queries.

Chapter 10, Storage Engines
Briefly describes the most important MySQL storage engines and some of the
tree structures and other data structures they employ.

Chapter 11, Transactions
Lists the main issues required to support transactions, and uses InnoDB to illus-
trate the typical architecture used to provide that support.

Chapter 12, Replication
Gives on overview of replication with an emphasis on issues of implementation.

Preface | xiii

Who This Book Is For
This book can be useful for a number of readers: a developer trying to extend
MySQL in some way; a DBA or database application programmer interested in how
exactly MySQL runs his queries; a computer science student learning about data-
base kernel development; a developer looking for ideas while working on a product
that requires extensive database functionality that he must implement himself; a
closed-source database developer wondering how in the world MySQL runs its que-
ries so fast; a random, curious computer geek who has used MySQL some and won-
ders what is inside; and, of course, anybody who wants to look smart by having a
book on MySQL internals displayed on his shelf.

Although MySQL source is open in the sense of being publicly available, it is in
essence closed to you if you do not understand it. It may be intimidating to look at
several hundred thousand lines of code written by gifted programmers that elegantly
and efficiently solves difficult problems one line at a time. To understand the code,
you will need a measure of the inspiration and perspiration of those who created it.
Hopefully, this book can provide enough guidance to remove those barriers and to
open the source of MySQL for you.

I do not believe it is possible to understand and appreciate MySQL strictly through a
conceptual discussion. On a high conceptual level MySQL is very simple. It does not
implement many revolutionary ideas. It sticks to the basics. Why is it so popular
then? Why do we know enough about it for O’Reilly to be willing to publish a book
on its internals?

The reason, in my opinion, is that what makes a good database is not so much the
concepts behind it, but how well they are implemented. It is important to be concep-
tually sound on a basic level, but a good portion of the genius is in implementing
those concepts in a way that provides a reasonable combination of good perfor-
mance and the ease of maintenance. In other words, the devil is in the details, and
MySQL developers have done a great job of taking that devil by the horns and twist-
ing his head off.

Thus, in order to appreciate the inner workings of MySQL, you need to get close to
the places where that devil is being subdued. Somewhere in the dark depths of the
optimizer or inside the B-tree, there is music to be heard as you study the code. It
will take some work to hear that music, but once you do, you can feel its beauty.
And to hear the music you must not be afraid to compile the code, add a few debug-
ging messages to help you understand the flow, and perhaps even change a few
things to appreciate what will make the server crash (and how) if you fail to handle
something that turns out to be important after all.

The first chapter provides a brief introduction of how different components of MySQL
work together. Immediately afterward you will find a chapter about downloading and
building MySQL from the source. You will have a much more meaningful experience

xiv | Preface

studying MySQL internals if you follow the steps in it to get set up with a working,
compilable copy of the code that you can change and test at your pleasure.

When approaching a new code base, I find it very useful to look at class/structure
definitions and API call prototypes. I have a confession to make: I first look at the
code, then read the comments, and I never look at block diagrams unless somebody
asks me to. Chapter 3 is for the developers whose heads are wired like mine; it talks
about the core server classes, structures, and API.

In Chapter 4 I talk about the communication protocol between the client and the
server. Afterward, I hope you will say: “I am thankful for the MySQL API, and I even
have a clue of how to fix it up if I had to!”

Chapter 5 discusses server configuration variables. Configuration variables are the
controls of the server. Every one of them tells you about some special server capabil-
ity or perhaps a problem some DBA had to solve at some point. It would not be too
much of an exaggeration to say that if you understand the variables, you understand
the server. Toward the end you will find a tutorial on how to add your own configu-
ration variables.

Every server has to deal with the issue of how to handle multiple clients concur-
rently. MySQL does it using threads. Understanding threads and how they are used
in MySQL is critical to being effective in working with MySQL source. Thus,
Chapter 6 discusses thread-based request handling.

One of the distinct features of the MySQL architecture is its ability to integrate third-
party storage engines. Chapter 7 focuses on the storage engine interface and pro-
vides a functional example of a simple storage engine.

Although at the moment MySQL supports a number of page and row-level locking
storage engines, the core architecture has a strong MyISAM heritage. Part of that her-
itage is the mechanism to acquire a table lock. The table lock awareness, even when
it is in essence a token lock, is important for an aspiring MySQL developer. Thus,
Chapter 8 focuses on the table lock manager.

Chapter 9 focuses on the parser and optimizer. This is the chapter I would recom-
mend to a DBA trying to improve the performance of MySQL. The key to optimiz-
ing MySQL queries and tables is to learn to think like the optimizer. This chapter
also provides an overview of the source code for the brave developers preparing to
immerse themselves into the optimizer’s dark depths.

Chapter 10 is a cursory overview of MySQL storage engines. It may be helpful to a
developer trying to create or integrate her own. A curious reader looking for what is
out there may also find it of interest.

Chapter 11 is mostly for developers working on integrating a transactional storage
engine into MySQL, while Chapter 12 focuses on the internals of replication.

Preface | xv

By no means is this book a comprehensive guide to MySQL internals. The subject is
so deep that I do not believe it is humanly possible to scratch the surface even if you
had 10,000 pages and the time to create them. To make matters more complicated,
MySQL developers are adding new code daily. Fortunately, most of the core code
tends to remain intact, so the book has a shot at not becoming obsolete before it is
published. Nevertheless, do not be surprised when you look at the current MySQL
code and find that some things are not quite like what you see in the book. You are
likely to see new classes and calls in the API. On occasion, you may find that an old
API call has a new argument. But hopefully the book can always serve as a guide to
teach you enough basics about the code to bring you to a level of proficiency that
will enable you to accomplish your goals.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates filenames, directories, and file extensions, new terms, URLs, com-
mands and command-line options, usernames, hostnames, email addresses, and
emphasized text.

Constant width
Indicates parts of code (such as variables, class names, methods, and macros),
elements of SQL statements, contents of files, and output from commands.

Constant width italic
Indicates text that should be replaced with user-supplied values.

Constant width bold
Indicates user input in examples.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. The longer examples can be down-
loaded from the book’s web site at http://www.oreilly.com/catalog/9780596009571.
You do not need to contact us for permission unless you’re reproducing a significant

xvi | Preface

portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by cit-
ing this book and quoting example code does not require permission. Incorporating
a significant amount of example code from this book into your product’s documen-
tation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: Understanding MySQL Internals by
Sasha Pachev. Copyright 2007 O’Reilly Media, Inc., 978-0-596-00957-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596009571

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

http://www.oreilly.com/catalog/9780596009571
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xvii

Acknowledgments
I would like to express special thanks to Andy Oram for his continual guidance and
encouragement as we worked together on this book. I am particularly grateful to the
MySQL development team for their cooperation and active participation in the
review. The input I received from Sergei Golubchik was invaluable. His knowledge
and vision of the MySQL code and architecture is amazing, as well as his ability to
pay attention to detail. At times, as I read his reviews, I would wonder if he possibly
got tired of the loads of technical detail and would speed-read past some inaccura-
cies or errors. The next moment I saw a note in red about some little but neverthe-
less important detail.

Special thanks also go to Brian Aker, Martin “MC” Brown, and Paul Kinzelman for
their reviews and suggestions. And last, but not least—special thanks to my wife
Sarah and my children Benjamin, Jennifer, Julia, Joseph, and Jacob for their patience
and support, as I spent many Saturdays in the office working on the book.

1

Chapter 1 CHAPTER 1

MySQL History and Architecture1

MySQL architecture is best understood in the context of its history. Thus, the two
are discussed in the same chapter.

MySQL History
MySQL history goes back to 1979 when Monty Widenius, working for a small com-
pany called TcX, created a reporting tool written in BASIC that ran on a 4 Mhz com-
puter with 16 KB RAM. Over time, the tool was rewritten in C and ported to run on
Unix. It was still just a low-level storage engine with a reporting front end. The tool
was known by the name of Unireg.

Working under the adverse conditions of little computational resources, and per-
haps building on his God-given talent, Monty developed a habit and ability to write
very efficient code naturally. He also developed, or perhaps was gifted from the start,
with an unusually acute vision of what needed to be done to the code to make it use-
ful in future development—without knowing in advance much detail about what
that future development would be.

In addition to the above, with TcX being a very small company and Monty being one of
the owners, he had a lot of say in what happened to his code. While there are perhaps a
good number of programmers out there with Monty’s talent and ability, for a number
of reasons, few get to carry their code around for more than 20 years. Monty did.

Monty’s work, talents, and ownership of the code provided a foundation upon
which the Miracle of MySQL could be built.

Some time in the 1990s, TcX customers began to push for an SQL interface to their
data. Several possibilities were considered. One was to load it into a commercial data-
base. Monty was not satisfied with the speed. He tried borrowing mSQL code for the
SQL part and integrating it with his low-level storage engine. That did not work well,
either. Then came the classic move of a talented, driven programmer: “I’ve had enough
of those tools that somebody else wrote that don’t work! I’m writing my own!”

2 | Chapter 1: MySQL History and Architecture

Thus in May of 1996 MySQL version 1.0 was released to a limited group, followed
by a public release in October 1996 of version 3.11.1. The initial public release pro-
vided only a binary distribution for Solaris. A month later, the source and the Linux
binary were released.

In the next two years, MySQL was ported to a number of other operating systems as
the feature set gradually increased. MySQL was originally released under a special
license that allowed commercial use to those who were not redistributing it with
their software. Special licenses were available for sale to those who wanted to bundle
it with their product. Additionally, commercial support was also being sold. This
provided TcX with some revenue to justify the further development of MySQL,
although the purpose of its original creation had already been fulfilled.

During this period MySQL progressed to version 3.22. It supported a decent subset
of the SQL language, had an optimizer a lot more sophisticated than one would
expect could possibly be written by one person, was extremely fast, and was very sta-
ble. Numerous APIs were contributed, so one could write a client in pretty much any
existing programming language. However, it still lacked support for transactions,
subqueries, foreign keys, stored procedures, and views. The locking happened only
at a table level, which in some cases could slow it down to a grinding halt. Some pro-
grammers unable to get around its limitations still considered it a toy, while others
were more than happy to dump their Oracle or SQL Server in favor of MySQL, and
deal with the limitations in their code in exchange for improvement in performance
and licensing cost savings.

Around 1999–2000 a separate company named MySQL AB was established. It hired
several developers and established a partnership with Sleepycat to provide an SQL
interface for the Berkeley DB data files. Since Berkeley DB had transaction capabili-
ties, this would give MySQL support for transactions, which it previously lacked.
After some changes in the code in preparation for integrating Berkeley DB, version
3.23 was released.

Although the MySQL developers could never work out all the quirks of the Berkeley
DB interface and the Berkeley DB tables were never stable, the effort was not wasted.
As a result, MySQL source became equipped with hooks to add any type of storage
engine, including a transactional one.

By April of 2000, with some encouragement and sponsorship from Slashdot, master-
slave replication capability was added. The old nontransactional storage engine,
ISAM, was reworked and released as MyISAM. Among a number of improvements,
full-text search capabilities were now supported. A short-lived partnership with
NuSphere to add Gemini, a transactional engine with row-level locking, ended in a
lawsuit toward the end of 2001. However, around the same time, Heikki Tuuri
approached MySQL AB with a proposal to integrate his own storage engine,
InnoDB, which was also capable of transactions and row-level locking.

MySQL History | 3

Heikki’s contribution integrated much more smoothly with the new table handler
interface already polished off by the Berkeley DB integration efforts. The MySQL/
InnoDB combination became version 4.0, and was released as alpha in October of
2001. By early 2002 the MySQL/InnoDB combo was stable and instantly took
MySQL to another level. Version 4.0 was finally declared production stable in March
2003.

It might be worthy of mention that the version number change was not caused by the
addition of InnoDB. MySQL developers have always viewed InnoDB as an impor-
tant addition, but by no means something that they completely depend on for suc-
cess. Back then, and even now, the addition of a new storage engine is not likely to
be celebrated with a version number change. In fact, compared to previous versions,
not much was added in version 4.0. Perhaps the most significant addition was the
query cache, which greatly improved performance of a large number of applications.
Replication code on the slave was rewritten to use two threads: one for network I/O
from the master, and the other to process the updates. Some improvements were
added to the optimizer. The client/server protocol became SSL-capable.

Version 4.1 was released as alpha in April of 2003, and was declared beta in June of
2004. Unlike version 4.0, it added a number of significant improvements. Perhaps
the most significant was subqueries, a feature long-awaited by many users. Spatial
indexing support was added to the MyISAM storage engine. Unicode support was
implemented. The client/server protocol saw a number of changes. It was made more
secure against attacks, and supported prepared statements.

In parallel with the alpha version of 4.1, work progressed on yet another develop-
ment branch: version 5.0, which would add stored procedures, server-side cursors,
triggers, views, XA transactions, significant improvements in the query optimizer,
and a number of other features. The decision to create a separate development
branch was made because MySQL developers felt that it would take a long time to
stabilize 4.1 if, on top of all the new features that they were adding to it, they had to
deal with the stored procedures. Version 5.0 was finally released as alpha in Decem-
ber 2003. For a while this created quite a bit of confusion—there were two branches
in the alpha stage. Eventually 4.1 stabilized (October 2004), and the confusion was
resolved.

Version 5.0 stabilized a year later, in October of 2005.

The first alpha release of 5.1 followed in November 2005, which added a number of
improvements, some of which are table data partitioning, row-based replication,
event scheduler, and a standardized plug-in API that facilitates the integration of new
storage engines and other plug-ins.

At this point, MySQL is being actively developed. 5.0 is currently the stable version,
while 5.1 is in beta and should soon become stable. New features at this point go
into version 5.2.

4 | Chapter 1: MySQL History and Architecture

MySQL Architecture
For the large part, MySQL architecture defies a formal definition or specification.
When most of the code was originally written, it was not done to be a part of some
great system in the future, but rather to solve some very specific problems. However,
it was written so well and with enough insight that it reached the point where there
were enough quality pieces to assemble a database server.

Core Modules
I make an attempt in this section to identify the core modules in the system. How-
ever, let me add a disclaimer that this is only an attempt to formalize what exists.
MySQL developers rarely think in those terms. Rather, they tend to think of files,
directories, classes, structures, and functions. It is much more common to hear “This
happens in mi_open()” than to hear “This happens on the MyISAM storage engine
level.” MySQL developers know the code so well that they are able to think concep-
tually on the level of functions, structures, and classes. They will probably find the
abstractions in this section rather useless. However, it would be helpful to a person
used to thinking in terms of modules and managers.

With regard to MySQL, I use the term “module” rather loosely. Unlike what one
would typically call a module, in many cases it is not something you can easily pull
out and replace with another implementation. The code from one module might be
spread across several files, and you often find the code from several different mod-
ules in the same file. This is particularly true of the older code. The newer code tends
to fit into the pattern of modules better. So in our definition, a module is a piece of
code that logically belongs together in some way, and performs a certain critical
function in the server.

One can identify the following modules in the server:

• Server Initialization Module

• Connection Manager

• Thread Manager

• Connection Thread

• User Authentication Module

• Access Control Module

• Parser

• Command Dispatcher

• Query Cache Module

• Optimizer

• Table Manager

MySQL Architecture | 5

• Table Modification Modules

• Table Maintenance Module

• Status Reporting Module

• Abstracted Storage Engine Interface (Table Handler)

• Storage Engine Implementations (MyISAM, InnoDB, MEMORY, Berkeley DB)

• Logging Module

• Replication Master Module

• Replication Slave Module

• Client/Server Protocol API

• Low-Level Network I/O API

• Core API

Interaction of the Core Modules
When the server is started on the command line, the Initialization Module takes con-
trol. It parses the configuration file and the command-line arguments, allocates glo-
bal memory buffers, initializes global variables and structures, loads the access
control tables, and performs a number of other initialization tasks. Once the initial-
ization job is complete, the Initialization Module passes control to the Connection
Manager, which starts listening for connections from clients in a loop.

When a client connects to the database server, the Connection Manager performs a
number of low-level network protocol tasks and then passes control to the Thread
Manager, which in turn supplies a thread to handle the connection (which from now
on will be referred to as the Connection Thread). The Connection Thread might be
created anew, or retrieved from the thread cache and called to active duty. Once the
Connection Thread receives control, it first invokes the User Authentication Mod-
ule. The credentials of the connecting user are verified, and the client may now issue
requests.

The Connection Thread passes the request data to the Command Dispatcher. Some
requests, known in the MySQL code terminology as commands, can be accommo-
dated by the Command Dispatcher directly, while more complex ones need to be
redirected to another module. A typical command may request the server to run a
query, change the active database, report the status, send a continuous dump of the
replication updates, close the connection, or perform some other operation.

In MySQL server terminology, there are two types of client requests: a query and a
command. A query is anything that has to go through the parser. A command is a
request that can be executed without the need to invoke the parser. We will use the
term query in the context of MySQL internals. Thus, not only a SELECT but also a
DELETE or INSERT in our terminology would be called a query. What we would call a
query is sometimes called an SQL statement.

6 | Chapter 1: MySQL History and Architecture

If full query logging is enabled, the Command Dispatcher will ask the Logging Mod-
ule to log the query or the command to the plain-text log prior to the dispatch. Thus
in the full logging configuration all queries will be logged, even the ones that are not
syntactically correct and will never be executed, immediately returning an error.

The Command Dispatcher forwards queries to the Parser through the Query Cache
Module. The Query Cache Module checks whether the query is of the type that can
be cached, and if there exists a previously computed cached result that is still valid.
In the case of a hit, the execution is short-circuited at this point, the cached result is
returned to the user, and the Connection Thread receives control and is now ready to
process another command. If the Query Cache Module reports a miss, the query
goes to the Parser, which will make a decision on how to transfer control based on
the query type.

One can identify the following modules that could continue from that point: the
Optimizer, the Table Modification Module, the Table Maintenance Module, the
Replication Module, and the Status Reporting Module. Select queries are forwarded
to the Optimizer; updates, inserts, deletes, and table-creation and schema-altering
queries go to the respective Table Modification Modules; queries that check, repair,
update key statistics, or defragment the table go to the Table Maintenance module;
queries related to replication go to the Replication Module; and status requests go to
the Status Reporting Module. There also exist a number of Table Modification Mod-
ules: Delete Module, Create Module, Update Module, Insert Module, and Alter
Module.

At this point, each of the modules that will receive control from the Parser passes the
list of tables involved in the query to the Access Control Module and then, upon suc-
cess, to the Table Manager, which opens the tables and acquires the necessary locks.
Now the table operation module is ready to proceed with its specific task and will
issue a number of requests to the Abstracted Storage Engine Module for low-level
operations such as inserting or updating a record, retrieving the records based on a
key value, or performing an operation on the table level, such as repairing it or
updating the index statistics.

The Abstracted Storage Engine Module will automatically translate the calls to the
corresponding methods of the specific Storage Engine Module via object polymor-
phism. In other words, when dealing with a Storage Engine object, the caller thinks it
is dealing with an abstracted one, when in fact the object is of a more specific type: it
is the Storage Engine object corresponding to the given table type. The interface
methods are virtual, which creates the effect of transparency. The correct method
will be called, and the caller does not need to be aware of the exact object type of the
Storage Engine object.

MySQL Architecture | 7

As the query or command is being processed, the corresponding module may send
parts of the result set to the client as they become available. It may also send warn-
ings or an error message. If an error message is issued, both the client and the server
will understand that the query or command has failed and take the appropriate mea-
sures. The client will not accept any more result set, warning, or error message data
for the given query, while the server will always transfer control to the Connection
Thread after issuing an error. Note that since MySQL does not use exceptions for
reasons of implementation stability and portability, all calls on all levels must be
checked for errors with the appropriate transfer of control in the case of failure.

If the low-level module has made a modification to the data in some way and if the
binary update logging is enabled, the module will be responsible for asking the Log-
ging Module to log the update event to the binary update log, sometimes known as
the replication log, or, among MySQL developers and power users, the binlog.

Once the task is completed, the execution flow returns to the Connection Thread,
which performs the necessary clean-up and waits for another query or command
from the client. The session continues until the client issues the Quit command.

In addition to interacting with regular clients, a server may receive a command from
a replication slave to continuously read its binary update log. This command will be
handled by the Replication Master Module.

If the server is configured as a replication slave, the Initialization Module will call the
Replication Slave Module, which in turn will start two threads, called the SQL
Thread and the I/O thread. They take care of propagating updates that happened on
the master to the slave. It is possible for the same server to be configured as both a
master and a slave.

Network communication with a client goes through the Client/Server Protocol Mod-
ule, which is responsible for packaging the data in the proper format, and depending
on the connection settings, compressing it. The Client/Server Protocol Module in
turn uses the Low-Level Network I/O module, which is responsible for sending and
receiving the data on the socket level in a cross-platform portable way. It is also
responsible for encrypting the data using the OpenSSL library calls if the connection
options are set appropriately.

As they perform their respective tasks, the core components of the server heavily rely
on the Core API. The Core API provides a rich functionality set, which includes file
I/O, memory management, string manipulation, implementations of various data
structures and algorithms, and many other useful capabilities. MySQL developers are
encouraged to avoid direct libc calls, and use the Core API to facilitate ports to new
platforms and code optimization in the future.

Figure 1-1 illustrates the core modules and their interaction.

8 | Chapter 1: MySQL History and Architecture

Detailed Look at the Core Modules
We will now take a closer look at each of the components. One purpose of the dis-
cussion is to connect the conceptual language used earlier with the actual source. In
addition, we will cover the some of the history of each component and try to esti-
mate its future development path.

Figure 1-1. High-level view of MySQL modules

Client makes request

Authenticates user
upon first request

Connection Manager

Thread Manager

Create or reuse Connection Thread

Authentication

User Module

Query Cache
Module

Commander
Dispatcher

Logging
Module

Parser

SELECT
UPDATE,

etc.

Repairs
Replication

Status

Optimizer

Table
Modification

Module
(Update, etc.)

Table
Maintenance

Module

Replication
Module

Status
Reporting

Module

Access
Control
Module

Table
Manager

Abstracted
Storage Engine

Module

MyISAM

InnoDB

MySQL Architecture | 9

Frequent references to the source will be made, and you may find it helpful to open
the mentioned files in a text editor and locate the function references. This can also
be done in a debugger, as shown in Chapter 3. That chapter will also tell you how to
get the source code.

Server Initialization Module

The Server Initialization Module is responsible for the server initialization on star-
tup. Most of the code is found in the file sql/mysqld.cc. The entry point is what a C/
C++ programmer would expect: main(). Some other functions of interest follow. If
the file is not mentioned, the location is sql/mysqld.cc:

• init_common_variables()

• init_thread_environment()

• init_server_components()

• grant_init() in sql/sql_acl.cc

• init_slave() in sql/slave.cc

• get_options()

Although the code found in version 3.22 was never rewritten from scratch, it has
been significantly refactored as new features were added to MySQL. One big chunk
of initialization code that used to be under main() got reorganized gradually into a
number of helper functions over the lifetime of the code. Additionally, the command
line and configuration file option parsing got switched from the GNU getopt() to
the MySQL Core API option parser once it became available in version 4.0.

In version 5.1, a significant portion was added to init_server_components() for plug-
in initialization.

Overall, this area of the code is fairly stable. Based on the past history, we should
anticipate possible incremental additions in the future as new features that require
special initialization on startup are added. However, a rewrite of this code is unlikely.

Connection Manager

The Connection Manager listens for incoming connections from clients, and dis-
patches the requests to the Thread Manager. This module is really just one function in
sql/mysqld.cc: handle_connections_sockets(). However, it deserves to be classified as
a separate module due to its critical role in the operation of the server. The abun-
dance of #ifdef directives speaks to the challenge of porting networking code to a
variety of operating systems.

Over time, the code evolved somewhat to accommodate quirks in the network sys-
tem calls of different operating systems. Further changes might be necessary in the
future as new ports are attempted, or as the different operating system vendors intro-
duce new quirks into new versions of their products.

10 | Chapter 1: MySQL History and Architecture

Thread Manager

The Thread Manager is responsible for keeping track of threads and for making sure
a thread is allocated to handle the connection from a client. This is another very
small module. Most of the code is found in sql/mysqld.cc. The entry point is create_
new_thread(). Another function of interest is start_cached_thread(), defined in the
same file.

One could perhaps consider the THD class defined in sql/sql_class.h and implemented
in sql/sql_class.cc as a part of this module. Objects of the THD type are thread descrip-
tors, and are critical in the operation of most of the server modules. Many functions
take a THD pointer as their first argument.

The thread management code was significantly reworked in version 3.23 when the
thread cache was added. Since then it has not been changed significantly. It is rea-
sonable to expect that it will not receive any significant changes in the future.

However, if we, in our abstraction, consider the THD class itself as part of this mod-
ule, we have a different story as far as changes are concerned. The addition of new
features such as prepared statements, server-side cursors, and stored procedures led
to a significant rework of THD in versions 4.1 and 5.0. It is now a super-class of the
Query_arena, Statement, Security_context, and Open_tables_state classes, which are
also defined in sql/sql_class.h.

Connection Thread

The Connection Thread is the heart of the work of processing client requests on an
established connection. This module is also very small. It consists of just one func-
tion: handle_one_connection() in sql/sql_parse.cc. However, despite its size, it
deserves to be classified as a module due to its role in the server.

The code evolved over time, gradually becoming more compact and readable as vari-
ous initializations involving THD variables were moved under the THD class. It is rea-
sonable to expect that the code will not change much in the future.

User Authentication Module

The User Authentication Module authenticates the connecting user and initializes
the structures and variables containing the information on his level of privileges. The
entry point for this module is check_connection() in sql/sql_parse.cc. However, the
rest of the functionality is found in sql/sql_acl.cc and sql/password.cc. Some interest-
ing functions to examine include:

• acl_check_host() in sql/sql_acl.cc

• create_random_string() in sql/password.cc

• check_user() in sql/sql_parse.cc

• acl_getroot() in sql/sql_acl.cc

MySQL Architecture | 11

The code has been significantly reworked only once, in version 4.1. Due to the possi-
ble impact of the changes, MySQL developers waited a while before they attempted
the updates in the protocol needed to implement a more secure authentication.

Since then, there have not been many changes to this code. However, with the addi-
tion of plug-in capability in 5.1, MySQL developers are planning to add pluggable
authentication and roles capabilities, which will require changes in this code.

Access Control Module

The Access Control Module verifies that the client user has sufficient privileges to
perform the requested operation. Most of the code is in sql/sql_acl.cc. However, one
of the most frequently used functions, check_access(), is found in sql/sql_parse.cc.
Some other functions of interest follow, all located in sql/sql_acl.cc unless otherwise
indicated:

• check_grant()

• check_table_access() in sql/sql_parse.cc

• check_grant_column()

• acl_get()

The code itself has not changed very much since version 3.22. However, new privi-
lege types were added in version 4.0, which somewhat changed the way this module
was used by the rest of the code. MySQL developers are planning to add support for
roles, which will require significant changes to this module.

Parser

The Parser is responsible for parsing queries and generating a parse tree. The entry
point is mysql_parse() in sql/sql_parse.cc, which performs some initializations and
then invokes yyparse(), a function in sql/sql_yacc.cc generated by GNU Bison from
sql/sql_yacc.yy, which contains the definition of the SQL language subset under-
stood by MySQL. Note that unlike many open source projects, MySQL has its own
generated lexical scanner instead of using lex. The MySQL lexical scanner is dis-
cussed in detail in Chapter 9. Some files of interest, in addition to the ones just men-
tioned, include:

• sql/gen_lex_hash.cc

• sql/lex.h

• sql/lex_symbol.h

• sql/lex_hash.h (generated file)

• sql/sql_lex.h

• sql/sql_lex.cc

• The group of files under sql/ with names starting in item_ and extensions of .h or .cc

12 | Chapter 1: MySQL History and Architecture

As the new SQL features are added, the parser keeps changing to accommodate
them. However, the core structure of the parser is fairly stable, and so far has been
able to accommodate the growth. It is reasonable to expect that while some ele-
ments will be added on, the core will not be changed very much for some time.
MySQL developers have been, and sometimes still are, talking about a core rewrite of
the parser and moving it away from yacc/Bison to make it faster. However, they have
been talking about it for at least seven years already, and this has not yet become a
priority.

Command Dispatcher

The Command Dispatcher is responsible for directing requests to the lower-level
modules that will know how to resolve them. It consists of two functions in sql/sql_
parse.cc: do_command() and dispatch_command().

The module kept growing over time as the set of supported commands increased.
Small growth is expected in the future, but the core structure is unlikely to change.

Query Cache Module

The Query Cache Module caches query results, and tries to short-circuit the execu-
tion of queries by delivering the cached result whenever possible. It is implemented
in sql/sql_cache.cc. Some methods of interest include:

• Query_cache::store_query()

• Query_cache::send_result_to_client()

The module was added in version 4.0. Few changes aside from bug fixes are expected
in the future.

Optimizer

The Optimizer is responsible for creating the best strategy to answer the query, and
executing it to deliver the result to the client. It is perhaps the most complex module
in the MySQL code. The entry point is mysql_select() in sql/sql_select.cc. This mod-
ule is discussed in detail in Chapter 9. Some other functions and methods of inter-
est, all in sql/sql_select.cc, include:

• JOIN::prepare()

• JOIN::optimize()

• JOIN::exec()

• make_join_statistics()

• find_best_combination()

• optimize_cond()

MySQL Architecture | 13

As you descend into the depths of the optimizer, there is a cave worth visiting. It is
the range optimizer, which was separate enough from the optimizer core and com-
plex enough to be isolated into a separate file, sql/opt_range.cc. The range optimizer
is responsible for optimizing queries that use a key with a given value range or set of
ranges. The entry point for the range optimizer is SQL_SELECT::test_quick_select().

The optimizer has always been in a state of change. The addition of subqueries in 4.1
has added another layer of complexity. Version 5.0 added a greedy search for the
optimal table join order, and the ability to use several keys per table (index merge). It
is reasonable to expect that many more changes will be made in the future. One
long-awaited change is improvements in the optimization of sub-queries.

Table Manager

The Table Manager is responsible for creating, reading, and modifying the table defi-
nition files (.frm extension), maintaining a cache of table descriptors called table
cache, and managing table-level locks. Most of the code is found in sql/sql_base.cc,
sql/table.cc, sql/unireg.cc, and sql/lock.cc. This module will be discussed in detail in
Chapter 9. Some functions of interest include:

• openfrm() in sql/table.cc

• mysql_create_frm() in sql/unireg.cc

• open_table() in sql/sql_base.cc

• open_tables() in sql/sql_base.cc

• open_ltable() in sql/sql_base.cc

• mysql_lock_table() in sql/lock.cc

The code has not changed much since version 3.22 except for the new table definition
file format in version 4.1. In the past, Monty has expressed some dissatisfaction with
the inefficiencies in the table cache code, and wanted to rewrite it. For a while, this
was not a top priority. However, some progress has finally been made in version 5.1.

Table Modification Modules

This collection of modules is responsible for operations such as creating, deleting,
renaming, dropping, updating, or inserting into a table. This is actually a very signifi-
cant chunk of code. Unfortunately, due to the space constraints, this book will not
cover it in detail. However, once you become familiar with the rest of the code, you
should be able to figure out the details by reading the source and using the debugger
without too much trouble by starting from the following entry points:

• mysql_update() and mysql_multi_update() in sql/sql_update.cc

• mysql_insert() in sql/sql_insert.cc

• mysql_create_table() in sql/sql_table.cc

14 | Chapter 1: MySQL History and Architecture

• mysql_alter_table() in sql/sql_table.cc

• mysql_rm_table() in sql/sql_table.cc

• mysql_delete() in sql/sql_delete.cc

The Update and Delete modules have been changed significantly in version 4.0 with
the addition of multi-table updates and deletes. Some reorganization also happened
in Update, Insert, and Delete modules to support prepared statements in version 4.1
and triggers in 5.1. Otherwise, aside from fairly minor improvements from time to
time, they have not changed much. It is reasonable to expect that for the large part
the code will remain as it is in the future.

Table Maintenance Module

The Table Maintenance Module is responsible for table maintenance operations such
as check, repair, back up, restore, optimize (defragment), and analyze (update key
distribution statistics). The code is found in sql/sql_table.cc. The core function is
mysql_admin_table(), with the following convenience wrappers:

• mysql_check_table()

• mysql_repair_table()

• mysql_backup_table()

• mysql_restore_table()

• mysql_optimize_table()

• mysql_analyze_table()

mysql_admin_table() will further dispatch the request to the appropriate storage
engine method. The bulk of the work happens on the storage engine level.

The module was introduced in version 3.23 to provide an SQL interface for table
maintenance. Prior to that table maintenance had to be performed offline. In version
4.1, significant changes were made to the Network Protocol Module to support pre-
pared statements. This affected all the modules that talk back to the client, including
the Table Maintenance Module. Otherwise, not much has changed since its intro-
duction, and it is reasonable to expect that not much will in the future.

Status Reporting Module

The Status Reporting Module is responsible for answering queries about server con-
figuration settings, performance tracking variables, table structure information, repli-
cation progress, condition of the table cache, and other things. It handles queries
that begin with SHOW. Most of the code is found in sql/sql_show.cc. Some functions of
interest, all in sql/sql_show.cc unless indicated otherwise, are:

• mysqld_list_processes()

• mysqld_show()

MySQL Architecture | 15

• mysqld_show_create()

• mysqld_show_fields()

• mysqld_show_open_tables()

• mysqld_show_warnings()

• show_master_info() in sql/slave.cc

• show_binlog_info() in sql/sql_repl.cc

The module has been constantly evolving. The addition of new functionality has cre-
ated the need for additional status reporting. It is reasonable to expect that this pat-
tern will continue in the future.

Abstracted Storage Engine Interface (Table Handler)

This module is actually an abstract class named handler and a structure called a
handlerton. The handlerton structure was added in version 5.1 for plug-in integra-
tion. It provides a standardized interface to perform low-level storage and retrieval
operations.

The table hander is defined in sql/handler.h and partially implemented in sql/handler.cc.
The derived specific storage engine classes will have to implement all the pure virtual
methods of this class. It will be discussed in greater detail in Chapter 9.

This module was introduced in version 3.23 to facilitate the integration of Berkeley
DB tables. This move had far-reaching consequences: now a variety of low-level stor-
age engines could be put underneath MySQL with a fair amount of ease. The code
was further refined during the integration of InnoDB. The future of the module will
largely depend on what new storage engines will be integrated into MySQL, and on
the way the existing ones will change. For example, sometimes a new feature in some
underlying storage engine may require an addition to the abstracted interface to
make it available to the higher-level modules.

Storage Engine Implementations (MyISAM, InnoDB, MEMORY, Berkeley DB)

Each of the storage engines provides a standard interface for its operations by
extending the handler class mentioned earlier. The methods of the derived class
define the standard interface operations in terms of the low-level calls of the specific
storage engine. This process and the individual storage engine will be discussed in
detail in Chapter 10. Meanwhile, for a quick introduction, you may want to take a
look at a few files and directories of interest:

• sql/ha_myisam.h and sql/ha_myisam.cc

• sql/ha_innodb.h and sql/ha_innodb.cc

• sql/ha_heap.h and sql/ha_heap.cc

• sql/ha_ndbcluster.h and sql/ha_ndbcluster.cc

16 | Chapter 1: MySQL History and Architecture

• myisam/

• innobase/

• heap/

• ndb/

When the storage engine interface was first abstracted (version 3.23), there were only
three fully functional storage engines: MyISAM, ISAM (older version of MyISAM),
and MEMORY. (Note that the MEMORY storage engine used to be called HEAP,
and some of the file and directory names in the source tree still reflect the earlier
name.) However, the list grew rapidly with the addition of BerkeleyDB, MERGE,
InnoDB, and more recently, NDB for the MySQL Cluster. Most storage engines are
still in fairly active development, and we may see some new ones added in the future.

Logging Module

The Logging Module is responsible for maintaining higher-level (logical) logs. A stor-
age engine may additionally maintain its own lower-level (physical or logical) logs for
its own purposes, but the Logging Module would not be concerned with those; the
storage engine itself takes charge. The logical logs at this point include the binary
update log (used mostly for replication, otherwise), command log (used mostly for
server monitoring and application debugging), and slow query log (used for tracking
down poorly optimized queries).

Prior to version 5.1, the module was contained for the most part by the class MYSQL_
LOG, defined in sql/sql_class.h and implemented in sql/log.cc. Version 5.1 brought a
rewrite of this module. Now there exists a hierarchy of log management classes, and
MYSQL_LOG is a super-class of TC_LOG, both of which are defined in sql/log.h.

However, most of the work in logging happens in the binary replication log. The
classes for log event creation and reading for the binary replication log are defined in
sql/log_event.h and implemented in sql/log_event.cc. Both the Replication Master and
Replication Slave modules rely heavily on this functionality of the Logging Module.

Significant changes were made to this module with the introduction of replication.
Version 5.0 brought on some changes required for XA transactions. Version 5.1
added the capability to search logs as if they were an SQL table, which required a sig-
nificant refactoring of this code. The binary logging part required significant changes
to accommodate row-based replication. At this point it is hard to anticipate where
this code is going in the future.

Replication Master Module

The Replication Master Module is responsible for the replication functionality on the
master. The most common operation for this module is to deliver a continuous feed
of replication log events to the slave upon request. Most of the code is found in sql/
sql_repl.cc. The core function is mysql_binlog_send().

MySQL Architecture | 17

The module was added in version 3.23, and it has not experienced any major
changes other than a thorough cleanup to isolate chunks of code into functions. In
the beginning, the code had very ambitions development plans for fail-safe replica-
tion. However, before those plans could be realized, MySQL acquired NDB Cluster
code from Ericsson, and began pursuing another route to the eventual goal of auto-
matic failover. In light of those developments, it is not clear at this point how the
native MySQL replication will progress.

This module will be discussed in greater detail in Chapter 12.

Replication Slave Module

The Replication Slave Module is responsible for the replication functionality of the
slave. The role of the slave is to retrieve updates from the master, and apply them on
the slave. The slave starting in version 4.0 is two-threaded. The network I/O thread
requests and receives a continuous feed of updates from the master, and logs them in
a local relay log. The SQL thread applies them as it reads them from the relay logs.
The code for this module is found in sql/slave.cc. The most important functions to
study are handle_slave_io() and handle_slave_sql().

The module was added in 3.23 along with the Replication Master module. It went
through a substantial change in version 4.0 when the monolithic slave thread was
broken down into the SQL thread and the I/O thread.

This module will be discussed in greater detail in Chapter 12.

Client/Server Protocol API

The MySQL client/server communication protocol sits on top of the operating sys-
tem protocol (TCP/IP or local socket) in the protocol stack. This module imple-
ments the API used across the server to create, read, interpret, and send the protocol
packets. The code is found in sql/protocol.cc, sql/protocol.h, and sql/net_serv.cc.

The files sql/protocol.h and sql/protocol.cc define and implement a hierarchy of classes.
Protocol is the base class, and Protocol_simple, Protocol_prep, and Protocol_cursor
are derived from it. Some functions of interest in this module are:

• my_net_read() in sql/net_serv.cc

• my_net_write() in sql/net_serv.cc

• net_store_data() in sql/protocol.cc

• send_ok() in sql/protocol.cc

• send_error() in sql/protocol.cc

In version 4.0 the protocol was changed to support packets up to 4 GB in size. Prior
to that, the limit was 24 MB. The Protocol class hierarchy was added in version 4.1
to deal with prepared statements. It appears that at this point most of the problem-
atic areas in the protocol at this level have been addressed, and it is reasonable to

18 | Chapter 1: MySQL History and Architecture

expect that this code will not be changing much in the near future. However,
MySQL developers are thinking about adding support for notifications.

This module will be discussed in greater detail in Chapter 5.

Low-Level Network I/O API

The Low-Level Network I/O API provides an abstraction for the low-level network
I/O and SSL sessions. The code is found in the vio/ directory. All functions in this
module have names starting with vio_.

This module was introduced in 3.23, spurred by the need to support SSL connec-
tions. Abstracting the low-level network I/O also facilitated porting to new plat-
forms and maintaining the old ports.

Core API

The Core API is the Swiss Army knife of MySQL. It provides functionality for porta-
ble file I/O, memory management, string manipulation, filesystem navigation, for-
matted printing, a rich collection of data structures and algorithms, and a number of
other things. If a problem ever arises, there is usually a solution for it in the Core API
Module. If there is not, it will be coded up. This module is to a great extent an
expression of Monty’s ability and determination to never solve just one problem. It is
perhaps the core component of the Miracle of MySQL.

The code is found in the mysys/ and strings/ directories. Many of the core API func-
tions have names starting with my_.

The module has always been in a state of growth and improvement. As the new func-
tionality is added, great care is put into preserving its stability and high level of per-
formance. It is reasonable to expect that this pattern will continue in the future.

This module will be discussed in greater detail in Chapter 3.

19

Chapter 2 CHAPTER 2

Nuts and Bolts of Working with the
MySQL Source Code2

Much can be learned about MySQL by studying its source. Monty Widenius, the cre-
ator of MySQL, once half-jokingly remarked that the source is the ultimate docu-
mentation. Indeed, assuming that the hardware and the compiler are functioning
properly, the software will do exactly what the source tells it to. However, under-
standing the source of a complex program such as MySQL can be a challenge. The
purpose of this chapter is to give you a head start in your study of the source.

Unix Shell
Although MySQL runs on a number of different platforms, you will find it easier to
study the source if you get an account on some Unix-like system, such as Linux,
FreeBSD, Mac OS X, or Solaris. If you do not have a preference to start with, I recom-
mend Linux. It could be either a remote server, or running on your desktop. The exam-
ples in this chapter assume you are logged in to a Unix command shell, and that your
shell is Bourne-compatible to some degree. One way to get such a shell is to execute:

 /bin/sh

right after you log in.

BitKeeper
MySQL developers use BitKeeper (http://www.bitmover.com) for source revision con-
trol. A BitKeeper repository containing MySQL source code is publicly available with
read-only access. Although MySQL source code can also be obtained by download-
ing a compressed archive, using BitKeeper offers a number of advantages:

• You get the most recent source version and can stay up to date with all the devel-
opments on a daily basis.

• BitKeeper tools allow you to easily keep track of changes.

• You can easily keep track of your own changes and submit patches to MySQL
developers.

http://www.bitmover.com

20 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

Unfortunately, there are also some disadvantages:

• The initial setup requires a download of over 30 MB of data if you are down-
loading the revision history.

• Special tools such as autoconf, automake, and bison have to be installed in order
to build MySQL.

• Since BitMover decided to discontinue the Open Logging License, it is not possi-
ble to automatically integrate your changes, submit patches, and do other tasks
without buying a commercial license.

If the disadvantages of using BitKeeper in your situation outweigh the advantages,
please refer to the “Building from Source Distribution” section in this chapter. Other-
wise, the first step is to make sure that BitKeeper is installed on your system.

Without a commercial license, the only advantage of using BitKeeper is being able to
get the most recent development source. If you are not planning to use the commer-
cial version of BitKeeper, follow these instructions to download the free BitKeeper
client:

1. Download http://www.bitmover.com/bk-client.shar.

2. Unpack it by running /bin/sh bk-client.shar.

3. Execute cd bk_client-1.1; make to build it.

4. Set PATH=$PWD:$PATH to get around some quirks in sfioball.

To get the MySQL source code, execute:

$ sfioball bk://mysql.bkbits.net/mysql-version some-directory

where version is the version number of MySQL of interest, such as 5.1, and some-
directory is where you want to keep the source. For example, you might enter:

$ sfioball bk://mysql.bkbits.net/mysql-5.1 /home/devel/mysql-5.1

If you want the entire revision history, which will make the download take longer,
enter:

$ sfioball -r+ bk://mysql.bkbits.net/mysql-5.1 /home/devel/mysql-5.1

To update your version (assuming you have 5.1), execute:

$ update bk://mysql.bkbits.net/mysql-5.1 /home/devel/mysql-5.1

You can also browse the change sets online at http://mysql.bkbits.net for different
MySQL version trees.

If you are willing to invest in the commercial version of BitKeeper, visit http://
www.bitmover.com/cgi-bin/license.cgi and follow the instructions, which call for
you to fill out a form and get an email response with details about downloading.

Once you have BitKeeper installed, I would recommend running bk helptool to famil-
iarize yourself with the following basic commands:

http://www.bitmover.com/bk-client.shar
http://mysql.bkbits.net
http://www.bitmover.com/cgi-bin/license.cgi
http://www.bitmover.com/cgi-bin/license.cgi

BitKeeper | 21

• bk clone

• bk edit

• bk new

• bk rm

• bk citool

• bk commit

• bk pull

• bk push

• bk diffs

Once you get comfortable with BitKeeper, the next step is to clone the repository of
the MySQL version you would like to study. As of this writing, there are six version
repositories available. They are summarized in Table 2-1.

The following directions and discussion apply mostly to the commercial version of
BitKeeper.

To create a local copy of the repository, execute the clone command:

$ bk clone url

For example, if you want to get a copy of the 5.1 version repository, enter:

$ bk clone bk://mysql.bkbits.net/mysql-5.1

To clone the repository or access it via sfioball, your local instance of BitKeeper has
to connect to port 7000 on mysql.bkbits.net. If you are behind a restrictive firewall, it
might block an outgoing connection on that port. Fortunately, in the commercial
version there’s a workaround if you happen to have a local HTTP proxy (substitute
the proper host name and port in the first command):

$ http_proxy="http://proxy_host_name:proxy_port/"
$ export http_proxy

If you do not have the commercial version, you may still be able to overcome the
restriction with creative tunneling and port-forwarding.

Table 2-1. Versions of MySQL maintained through BitKeeper

MySQL version Description BitKeeper repository URL

3.23 Historically old unsupported version bk://mysql.bkbits.net/mysql-3.23

4.0 Old unsupported version bk://mysql.bkbits.net/mysql-4.0

4.1 Old supported version to be phased out soon bk://mysql.bkbits.net/mysql-4.1

5.0 Current stable version bk://mysql.bkbits.net/mysql-5.0

5.1 Current beta version bk://mysql.bkbits.net/mysql-5.1

5.2 Current development version bk://mysql.bkbits.net/mysql-5.2

bk://mysql.bkbits.net/mysql-3.23
bk://mysql.bkbits.net/mysql-4.0
bk://mysql.bkbits.net/mysql-4.1
bk://mysql.bkbits.net/mysql-5.0
bk://mysql.bkbits.net/mysql-5.1
bk://mysql.bkbits.net/mysql-5.2

22 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

The initial clone operation will transfer over 30 MB of data, so it could take a while
depending on the speed of your connection and the overall network traffic conges-
tion. When I did the previous clone around 11 P.M. EST on a 640 MBit/s DSL con-
nection in Provo, Utah, the whole process completed in nine minutes.

Once the clone has been completed, you will see a subdirectory in your current direc-
tory corresponding to the name of the repository. For example, if you cloned version
5.1, the name of the directory will be mysql-5.1. If you prefer a different name, add an
argument to the original command, for example:

$ bk clone bk://mysql.bkbits.net/mysql-5.1 src/mysql

Preparing the System to Build MySQL from
BitKeeper Tree
Once you have cloned the BitKeeper repository, the following tools must be installed
for the build scripts to work:

• autoconf

• automake

• m4

• libtool

• GNU make

• bison

• gcc or some other C++ compiler

The required version’s utilities will be present on most Linux distributions that were
put together in the second half of 2003 or later. If you have an older or a very cus-
tomized Linux installation, or if you are using a different Unix variant, refer to
Table 2-2 to verify that you have the required version of each tool.

Table 2-2. Versions of required build tools

Tool Minimum required version URL

autoconf 2.53 http://www.gnu.org/software/autoconf/

automake 1.8 http://www.gnu.org/software/automake/

m4 No version limit http://www.gnu.org/software/m4/

libtool 1.5 http://www.gnu.org/software/libtool/

GNU make 3.79 http://www.gnu.org/software/make/

bison 1.75 http://www.gnu.org/software/bison/

gcc 2.95 http://www.gnu.org/software/gcc/

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/make/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/gcc/

Preparing the System to Build MySQL from BitKeeper Tree | 23

Note that the executable binary for each tool must be in your PATH. The following
Bourne shell script will provide a helpful summary that you can use to evaluate
whether your system is ready:

#! /bin/sh
for tool in autoconf automake m4 libtool make bison gcc
do
 echo "Checking for $tool:"
 $tool –version
done

If the tools are installed and in your path, the script produces output similar to this:

Checking for autoconf:
autoconf (GNU Autoconf) 2.59
Written by David J. MacKenzie and Akim Demaille.

Copyright (C) 2003 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Checking for automake:
automake (GNU automake) 1.8.5
Written by Tom Tromey <tromey@redhat.com>.

Copyright 2004 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Checking for m4:
GNU m4 1.4o
Checking for libtool:
ltmain.sh (GNU libtool) 1.5.6 (1.1220.2.94 2004/04/10 16:27:27)

Copyright (C) 2003 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Checking for make:
GNU Make version 3.79.1, by Richard Stallman and Roland McGrath.
Built for i686-pc-linux-gnu
Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

Report bugs to <bug-make@gnu.org>.

Checking for bison:
bison (GNU Bison) 1.875
Written by Robert Corbett and Richard Stallman.

Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Checking for gcc:
2.95.3

24 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

Determine the versions of each utility from the output of the script, and compare
them against the table. If the numbers are less than the version numbers required,
perform the necessary upgrades.

Building MySQL from BitKeeper Tree
MySQL developers have created a number of scripts to build different types of
MySQL binaries on different platforms. They are found in the BUILD directory of
the BitKeeper tree. Unfortunately, at the time of this writing, I could not find the one
that would build a debugging-enabled binary on any architecture. To solve the prob-
lem, I will provide instructions on how to create one:

1. Copy compile-pentium-debug to compile-generic-debug.

2. Open compile-generic-debug in a text editor.

3. Change the line extra_flags="$pentium_cflags $debug_cflags" to extra_flags="-g
$debug_cflags".

4. Remove all lines starting with: extra_configs= .

5. Add a line extra_configs="" before the line . "$path/FINISH.sh".

6. Save the edited file.

After the edit, compile-generic-debug will look like this:

#! /bin/sh

path='dirname $0'
. "$path/SETUP.sh" $@ --with-debug=full

extra_flags="-g $debug_cflags"
c_warnings="$c_warnings $debug_extra_warnings"
cxx_warnings="$cxx_warnings $debug_extra_warnings"
extra_configs=""

. "$path/FINISH.sh"

Now you are ready to use compile-generic-debug for the build. At the shell prompt
from the root of the cloned repository, execute the following:

$ BUILD/compile-generic-debug

The script will generate the make files, create the necessary headers with definitions,
and then compile the MySQL server, client, and miscellaneous utilities. This is a
fairly long process. It took 12 minutes on my desktop (Athlon 2200+, 1.5 GB RAM,
Linux).

During the build, you may see a number of warnings from different tools engaged in
the process. Those are usually safe to ignore if the build does not abort. To verify
that the build was successful, type at the shell prompt:

$ make test

Building from Source Distribution | 25

Ideally, you will see all of the tests either pass or be skipped. Some tests, especially
the ones that test replication, might fail on some systems due to the difficulties with
server shutdown and restart. Since the BitKeeper repository may contain source in
between releases, on occasion a developer may check in a test case for the bug that
has not yet been fixed. So if a couple of the tests fail, this is not something to worry
about for somebody studying how MySQL works. If the majority of the tests pass,
consider the built binary fit for at least your educational use.

The tests take about 20 minutes to run. If you do not want to wait that long, you
may simply check to see whether the mysqld binary was created:

$ ls -l sql/mysqld

If the build was successful, the command will produce output similar to:

-rwxr-xr-x 1 sasha sasha 5001261 Jul 29 12:23 sql/mysqld

If the build process succeeds in creating a binary out of the unmodified clone of the
public BitKeeper tree, the test suite also succeeds 95 percent of the time.

Building from Source Distribution
Although it is preferred that you use the BitKeeper repository, in some cases it might
be desirable for you to use another method to build MySQL. You can use the source
distribution in such cases. Although in most of the situations you will need only gcc,
gdb, and GNU make, there are times when other tools mentioned in the section “Pre-
paring the System to Build MySQL from BitKeeper Tree” are necessary. For exam-
ple, you will need Bison to change the parser, and adding another file to the source
will require the use of autoconf, automake, and m4. Therefore, it is still recom-
mended that you follow the same procedures outlined in that section to prepare your
system to the fullest extent possible.

Additionally, you will need the tar (http://www.gnu.org/software/tar) and gzip (http://
www.gnu.org/software/gzip) utilities to unpack the archive. If you have a non-GNU
tar already installed, it is recommended that you still install GNU tar. MySQL is
archived using GNU tar, and some variants of tar are not compatible with it.

The following instructions explain how to download and compile MySQL using the
source distribution:

1. Refer to the table listing MySQL versions in the “BitKeeper” section of this chap-
ter, and decide which version of MySQL you would like to work with. Steps 2–5
assume you have chosen version 4.1. If you have chosen a different version, you
will need to make the appropriate modifications to the following procedures,
replacing 4.1 with the version you have chosen.

2. Visit http://dev.mysql.com/downloads/mysql/4.1.html (note the version number in
the URL), scroll down to the bottom of the page where it says “Source down-
loads,” and click on the link that says “Pick a mirror” on the “Tarball” line.

http://www.gnu.org/software/tar
http://www.gnu.org/software/gzip
http://www.gnu.org/software/gzip
http://dev.mysql.com/downloads/mysql/4.1.html

26 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

3. Optionally fill out the form at the top of the next page and submit it, or just
scroll down to the bottom of the page, pick the mirror closest to you, click on
the link, and proceed with the download. You will be downloading about 19 MB
of data.

4. In the Unix shell, change to the directory where you plan to keep your MySQL
sources, and execute the following commands:

$ gunzip -d downloaded-archive-name | tar xvf -
$ cd mysql-full-version-name

5. Follow the instructions in the section “Building MySQL from BitKeeper Tree.” If
you have not installed all of the required tools for a BitKeeper Tree build, addi-
tionally edit BUILD/FINISH.sh to comment out the following lines by adding #
to the beginning:

aclocal || (echo \"Can't execute aclocal\" && exit 1)
autoheader || (echo \"Can't execute autoheader\" && exit 1)
aclocal || (echo \"Can't execute aclocal\" && exit 1)
automake || (echo \"Can't execute automake\" && exit 1)
autoconf || (echo \"Can't execute autoconf\" && exit 1)
(cd bdb/dist && sh s_all)
(cd innobase && aclocal && autoheader && aclocal && automake && autoconf)
if [-d gemini]
then
 (cd gemini && aclocal && autoheader && aclocal && automake && autoconf)
fi"

Installing MySQL into a System Directory
If desired, you may install MySQL into a system directory by executing:

$ make install

as the root user. By default, the install prefix is /usr/local. This can be changed by
adding –prefix=/path/to/other-prefix to the extra_configs variable in the build
script. If you do not have root privileges on the system, another build configuration
option will be helpful: add --with-mysqld-user=your_user_name to extra_configs. A
full listing of build configuration options can be obtained by executing:

./configure –help

in the root directory of the source tree.

If you do not plan to deploy the MySQL server binary you have built on this system,
installing it into a system directory is not necessary. The mysql-test-run script per-
mits you to start up the binary you have built and test it while it is located in the
directory where it was created.

Source Code Directory Layout | 27

Source Code Directory Layout
Table 2-3 lists the top-level subdirectories in the MySQL source tree, with a brief
explanation of each. Note that some reorganization is possible in the future ver-
sions, but most of the structure should be fairly stable.

Table 2-3. Top-level directories in MySQL source tree

Subdirectory Description

BUILD Developer build scripts.

Build-tools Mostly scripts for building binary distributions.

Docs Documentation.

NEW-RPMS Used by the distribution build scripts to hold new RPMs.

SSL Some configuration files from early SSL development.

VC++Files Used for building MySQL binaries on Windows.

bdb Berkeley DB storage engine code. Berkeley DB supports transactions and page locks. However, the inter-
face between Berkeley DB and core MySQL is not very well developed, and InnoDB storage engine is a
better choice when transactions are needed. Removed in version 5.1.

client Command-line client utilities code.

cmd-line-utils External libraries to enhance the command-line client (libedit and readline).

dbug Debugging library. I personally do not like using it because it alters execution and obscures the time-
sensitive bugs, but some developers, including Monty, love it for its ability to print out the execution
trace. To enable it, add –with-debug to extra_configs in your build script.

extra Code for miscellaneous tools.

heap Code for the in-memory tables. Moved to the storage/ directory in 5.1.

isam ISAM storage engine code (deprecated by MYISAM, removed in 5.0).

include Include files.

innobase Code for the InnoDB storage engine, which supports transactions and row-level locking. Moved to the
storage directory in 5.1.

libmysql Code for the client library for interfacing with the server.

libmysql_r Thread-safe version of the client library.

libmysqld Library for using MySQL server functionality in a standalone (embedded) mode without connecting to a
server.

man Unix manpages.

merge Code to support ISAM-MERGE tables, which allow you to use several ISAM tables of identical structure as
if they were one table. Removed in 5.1.

myisam MyISAM storage engine code. MyISAM is the latest version of the original MySQL storage engine. It does
not support transactions and requires table locks, but it uses less disk space and is faster on a number of
queries than InnoDB, the transactional storage engine. Moved to the storage directory in 5.1.

28 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

Preparing the System to Run MySQL in a Debugger
To fully enjoy the study of MySQL internals, and to be able to execute the examples
in the subsequent sections of this chapter, you must have gdb (http://www.gnu.org/
software/gdb/) installed on your system, and be present in your PATH. You also need
to have the X Window System, including a terminal program such as xterm. There
are a number of X standard implementations, perhaps the most popular of them
being X.org (http://www.x.org).

myisammrg Code to support MyISAM-MERGE tables, which allow you to use several MyISAM tables of identical struc-
ture as if they were one table. Moved to the storage directory in 5.1.

mysql-test Regression test suite.

mysys Core portability/helper API code.

ndb MySQL Cluster code, utility scripts, and documentation. Moved to the storage directory in 5.1.

netware Files used by the Netware port.

os2 Files used by the OS/2 port.

pstack Code for the pstack library that allows the executable to unwind and resolve its own stack. Useful in a
segmentation fault signal handler.

regex Code for the regex library, which enables the programmer to manipulate regular expressions.

scripts A collection of utility scripts used for a number of different purposes. When a developer writes a script
and does not know where to put it, it ends up in this directory. Note, however, that this is the home of
mysqld_safe, the king of all scripts. It is used to start the server from the command line.

sql Catch-all directory for the core server code written in C++. This includes the parser and optimizer, the
abstracted table handler (storage engine) interface, replication, query cache, table lock manager, the
code to read and write table definitions, the logging code, and a number of other pieces. It does have a
few stray C files that could not find a home in other directories. This is also the home of mysqld.cc, the
file that defines main(), where the execution starts when the server is launched.

sql-bench Scripts for SQL benchmarks.

sql-common Some of the files that are used in both the client and the server code.

strings Custom string library to suit the needs of MySQL.

storage Directory for storage engine code. Added in 5.1.

support-files Miscellaneous example configuration files and utility scripts. Also contains configuration files for pack-
age builds, such as the RPM spec files.

tests Specialized tests usually for difficult-to-duplicate bugs that do not fit into the format of the standard
regression suite.

tools In the pre-5.1 versions, this directory contained mysqlmanager, a utility used to perform controlled start
and shutdown of the server, and to test the replication. Removed in 5.1.

unittest Unit tests for the core API.

vio Low-level portability network I/O code.

zlib Code for ZLIB compression library.

Table 2-3. Top-level directories in MySQL source tree (continued)

Subdirectory Description

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.x.org

Debugger-Guided Source Tour | 29

The tools just mentioned will be preinstalled by default on most Linux distributions.
However, to confirm that you can debug threaded programs under gdb, it is impor-
tant to make sure that /lib/libpthread.so and /lib/libthread_db.so are not stripped. The
following example illustrates how to check this:

$ file -L /lib/libthread_db.so
/lib/libthread_db.so: ELF 32-bit LSB shared object, Intel 80386, version 1, not
stripped
$ file -L /lib/libpthread.so
/lib/libpthread.so: ELF 32-bit LSB shared object, Intel 80386, version 1, not
stripped

As you can see in the output, both libraries are not stripped. If you happen to have
the misfortune of having them stripped by default, and you are not able to find a
package with unstripped versions for your distribution, you can fix the problem by
recompiling glibc.

Debugger-Guided Source Tour
Now with the tedious but necessary preparation behind your back, you can actually
start exploring the source code. I find it particularly helpful, when faced with large
quantities of unfamiliar code, to start by running a very simple test case in a debug-
ger. MySQL, being a threaded server, presents a number of difficulties in this respect.
Fortunately, MySQL developers have created a set of tools to facilitate the process
for their own use, which they make available to the public. In this section, you will
learn how to use them.

Instructions for running a simple query in a debugger:

1. Change to the mysql-test subdirectory in the source tree.

2. Create a new file named t/example.test. It is important that the file be under the t
subdirectory, have the extension .test, and be different from the names of the
already existing test files in the t subdirectory. Outside of those restrictions, the
name of the file can be anything you want. If you choose a different name, how-
ever, you must also change references to it accordingly in the rest of this example.

3. Put the following line in the edited file:
select 1;

4. Save the file.

5. Execute the following command to create the master result file:
$./mysql-test-run --local --record example

6. Execute the following command to load MySQL server into gdb in a separate
xterm window (if you’re running it on another computer via SSH, be sure to
have SSH X-forwarding enabled. If it’s not possible—e.g., because you’re using
Windows—use --manual-gdb instead of --gdb):

$./mysql-test-run --gdb example

30 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

7. An xterm window will open with a gdb prompt inside. The MySQL server will be
started with a preset breakpoint in the mysql_parse() function in the file sql/sql_
parse.cc. The mysql-test-run script will spawn a client that will connect to the
server being debugged, and start executing the queries listed in example.test, in
our case, select 1. Refer to the sections “Basics of Working with gdb,” and
“Interesting Breakpoints and Variables,” later in this chapter, to set breakpoints
of interest, then enter c at the gdb prompt to continue execution.

8. When the execution of example.test terminates, mysql-test-run returns. How-
ever, the debugger window will remain open. You may connect using a MySQL
command client to port 9306 and manually issue various queries, set break-
points in the debugger, and examine their execution. A few examples follow.

From the Unix shell, enter:
$../client/mysql -uroot –host=127.0.0.1 –port=9306 test

You will enter the MySQL command-line client shell, from which you continue
with:

$ create table t1(n int);

When the debugger breaks in mysql_parse(), type into the debugger window:
disa 1
b mysql_insert
c

At the MySQL command-line client prompt, type:
insert into t1 values(345);

The debugger will break in mysql_insert(). In the debugger window, type:
bt

The debugger shows you the stack trace at the current breakpoint.

9. When finished with this debugger-guided source tour, press Ctrl-C if you do not
have the gdb prompt, execute the quit command in the debugger, confirm that
you want to stop the program being run when prompted, and return to the shell
prompt from which you have executed mysql-test-run.

10. To speed up the execution of your next debugger-guided source tour, execute
the following command at the shell prompt to clean up:

$ rm -f var/run/*.pid

Basics of Working with gdb
gdb has a command-line interface similar to a Unix shell. You type a command and
then press the Enter key to execute it. If you have never worked with gdb before,
begin by executing the help command, which produces the following output:

List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points

Basics of Working with gdb | 31

data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

The instructions in the preceding output give you a starting point from which you
can continue a more in-depth study of gdb. For example, if you want to learn about
how to run a program being debugged, execute help running, which in turn gives you
the following:

Running the program.

List of commands:

advance -- Continue the program up to the given location (same form as args for break
command)
attach -- Attach to a process or file outside of GDB
continue -- Continue program being debugged
detach -- Detach a process or file previously attached
disconnect -- Disconnect from a target
finish -- Execute until selected stack frame returns
handle -- Specify how to handle a signal
info handle -- What debugger does when program gets various signals
interrupt -- Interrupt the execution of the debugged program
jump -- Continue program being debugged at specified line or address
kill -- Kill execution of program being debugged
next -- Step program
nexti -- Step one instruction
run -- Start debugged program
set args -- Set argument list to give program being debugged when it is started
set environment -- Set environment variable value to give the program
set follow-fork-mode -- Set debugger response to a program call of fork or vfork
set scheduler-locking -- Set mode for locking scheduler during execution
set step-mode -- Set mode of the step operation
show args -- Show argument list to give program being debugged when it is started
show follow-fork-mode -- Show debugger response to a program call of fork or vfork
show scheduler-locking -- Show mode for locking scheduler during execution
show step-mode -- Show mode of the step operation
signal -- Continue program giving it signal specified by the argument
step -- Step program until it reaches a different source line
stepi -- Step one instruction exactly
target -- Connect to a target machine or process
thread -- Use this command to switch between threads
thread apply -- Apply a command to a list of threads

32 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

apply all -- Apply a command to all threads
tty -- Set terminal for future runs of program being debugged
unset environment -- Cancel environment variable VAR for the program
until -- Execute until the program reaches a source line greater than the current

Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

Now you have a list of commands, related to running a program, to learn. Suppose
you want to learn about the run command. Execute help run. The following output is
produced:

Start debugged program. You may specify arguments to give it.
Args may include "*", or "[...]"; they are expanded using "sh".
Input and output redirection with ">", "<", or ">>" are also allowed.

With no arguments, uses arguments last specified (with "run" or "set args").
To cancel previous arguments and run with no arguments,
use "set args" without arguments.

Using the preceding method, you can get a full listing of gdb commands and learn
about each one. If you prefer reading the manual, it is available at http:://www.gnu.org/
software/gdb/documentation.

Table 2-4 is a list of commands that you may find particularly useful when studying
the MySQL source. Note the abbreviated version column. Using abbreviated ver-
sions significantly speeds up the tasks even if you are a fast typist.

Table 2-4. Common gdb commands

Command
Common
abbreviation Description Examples

breakpoint b Sets a breakpoint. b mysql_select

b sql_parse.cc:245

continue c Continues execution to the next breakpoint, until the pro-
gram terminates. If an argument n is given and the execu-
tion continues from a breakpoint, stop on that breakpoint
only on the nth pass.

c

c 10

next n Executes the next line without stepping into subroutine
calls. If an argument n is given, do this n times or until the
program stops for another reason.

n

n 15

step s Executes the next line, stepping into subroutine calls. If an
argument n is given, do this n times or until the program
stops for another reason.

s

s 20

finish fin Executes until the current subroutine returns. fin

backtrace bt Prints the stack trace. With the full argument, also prints
the values of local variables in each stack frame.

bt

bt full

enable ena Enables a disabled breakpoint. ena 3

disable disa Disables an enabled breakpoint. disa 3

http:://www.gnu.org/software/gdb/documentation
http:://www.gnu.org/software/gdb/documentation

Finding Things in the Source | 33

Finding Things in the Source
A typical question programmers ask when working with a large unfamiliar code base
is “Where in the world is the function get_and_lock_X() defined?” There are many
techniques to find the answer, and many programmers have their own favorites. For
those who do not, or who are having a hard time adapting them to the MySQL
source, I will share mine.

Suppose you need to find the definition of mysql_lock_tables(). Follow these steps:

1. Start an instance of MySQL server in a debugger as outlined in the section
“Debugger-Guided Source Tour.”

2. Once the debugger window opens, type in the debugger window:
i li mysql_lock_tables

info
breakpoints

i b Prints a list of breakpoints with detailed information about
each.

i b

info line i li Prints information about the current line being debugged
if the argument is omitted, otherwise prints information
about the specified line.

i li

i li main

i li mi_open.c:83

print p Prints the value of the variable or expression specified as an
argument.

p thd

p *thd

p thd->query

p length

list l Prints the source code based on the value of the argument. l mysql_query

l sql_parse.cc:245

info local i lo Shows the values of local variables of the current frame. info local

up up Selects and prints the local variables of the frame above the
current one. The argument tells the number of frames to
go up; the default is 1.

up

up 2

down down Selects and prints the local variables of the frame below
the current one. The argument tells how many frames to
go down; the default is 1.

down

down 3

info threads i th Lists all running threads with some information about
each.

i th

thread thr Switches to the specified thread. thr 10

info
registers

i r Prints the contents of the processor registers. i r

disassemble disas Disassembles the specified section of code. If no argument
is given, disassembles the executable code surrounding the
pc register of the current stack frame.

disas

disas mysql_select

Table 2-4. Common gdb commands (continued)

Command
Common
abbreviation Description Examples

34 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

The debugger responds with:
 Line 86 of "lock.cc"
 starts at address 0x8125540 <mysql_lock_tables_ _FP3THDPP8st_tableUi>
 and ends at 0x812554f <mysql_lock_tables_ _FP3THDPP8st_tableUi+15>.

This tells you that mysql_lock_tables() is defined on line 86 of lock.cc. Unfortu-
nately, it doesn’t say which directory the file is in, so one more step is necessary.

3. Execute the following command from the root of the source tree:
$ find . -name lock.cc | xargs ls -l

This command returns two filenames in the output:
lrwxrwxrwx 1 sasha sasha 16 Jul 29 15:08 ./libmysqld/lock.cc -> ./../
sql/lock.cc
-rw-rw-r-- 1 sasha sasha 20863 Jul 14 21:40 ./sql/lock.cc

From the output, you can see that libmysqld/lock.cc is a just a symbolic link,
while the actual file is sql/lock.cc.

Sometimes things do not go as smoothly as in the previous example. What appears
to be a function could in reality be a preprocessor macro. If that happens, the debug-
ger will tell you it knows nothing about the symbol. Fortunately, grep comes to the
rescue. Suppose you need to find the definition of ha_commit(), and the debugger has
already told you that there is no such symbol. Execute the following command from
the root of the source tree:

$ find . -name *.h | xargs grep ha_commit

The following output is returned:

./sql/handler.h:513:#define ha_commit_stmt(thd)
(ha_commit_trans((thd), &((thd)->transaction.stmt)))
./sql/handler.h:515:#define ha_commit(thd) (ha_commit_trans((thd),
&((thd)->transaction.all)))
./sql/handler.h:543:int ha_commit_complete(THD *thd);
./sql/handler.h:545:int ha_commit_trans(THD *thd, THD_TRANS *trans);
./sql/mysql_priv.h:859:extern ulong ha_commit_count,
ha_rollback_count,table_cache_size;

You can see from the output that the macro ha_commit() is defined on line 515 of sql/
handler.h and is aliased to ha_commit_trans() with an additional argument.

Interesting Breakpoints and Variables
If you have ever worked with an unfamiliar code base of significant size, you have
most certainly been confronted with the challenge of mentally penetrating the execu-
tion flow. Yes, I understand this init_X() function, but where in the world does the
meat really begin when I do operation Y?

Table 2-5, along with debugger-guided source tours inspired by its contents, will hope-
fully help you answer a number of such questions. It is based on the 4.1 source, but for
the most part should be applicable to other versions. Although MySQL developers

Interesting Breakpoints and Variables | 35

could possibly change the names of the functions and the code organization at any
time in future versions, in practice 95 percent of the functions continue to carry their
original name and role once that section of the code has stabilized. The asterisks in
the final column do not indicate C++ pointers; they mean “all variables whose
names match.”

Table 2-5. Key functions and variables involved in common MySQL operations

Operation Good place for an entry breakpoint
Interesting variables to
examine

Select query mysql_select() *thd
thd->query
*tables
*join

Insert query mysql_insert() *thd
thd->query
*table
fields
values_list

Update query mysql_update() *thd
thd->query
*table_list
fields
values
*conds

Delete query mysql_delete() *thd
thd->query
*table_list
*conds

Checking whether the query can
be answered from a query cache

Query_cache::send_result_to_client() *this
*thd
sql

Reading a communication
packet from a client

my_net_read() *net

Writing a communication
packet to a client

my_net_write() *net
packet
len

Authenticating a connection check_connection() *thd
thd->net

Logging an update on a replica-
tion master

MYSQL_LOG::write(Log_event *) *event_info
*event_info->thd
event_info->thd->
query

Replication slave startup start_slave_threads() *mi

Execution of replication thread
on the slave that handles net-
work I/O

handle_slave_io() *mi

Execution of replication thread
on the slave that handles SQL
commands

handle_slave_sql() *rli

36 | Chapter 2: Nuts and Bolts of Working with the MySQL Source Code

Making a Source Modification
If you have not added any extra files to the source, after making the change, simply
execute:

$ make

from the root of the source tree, and wait for the recompilation and relinking to fin-
ish. If the only files you have changed are in the sql directory, it is sufficient to run
make only in that directory, which will reduce the time of the process because make
would doesn’t check other directories to see whether anything needs to be done
there.

If you have added new files, follow these steps:

1. For each directory where you added files, edit Makefile.am in that directory.

2. In each Makefile.am, find the appropriate variable that ends in SOURCES. For
example, in the sql directory, the variable is called mysqld_SOURCES, and in the
myisam directory, libmyisam_a_SOURCES.

3. Add the names of your C/C++ files that you have added to the SOURCES variable.

4. In each Makefile.am file, find the variables INCLUDES and noinst_HEADERS. Add the
names of the new headers that you want to be installed by a make install com-
mand to INCLUDES, and the ones that do not need to be installed to noinst_
HEADERS.

5. Execute BUILD/compile-generic-debug (or its equivalent) as described in the sec-
tion “Building MySQL from BitKeeper Tree.”

Opening a table open_table() *thd
thd->query
db
table_name
alias

Reading the table definition file
(.frm)

openfrm() name
alias

Opening a MyISAM table ha_myisam::open() *this
name

Opening an InnoDB table ha_innobase::open() *this
name

Acquiring a table lock mysql_lock_tables() *thd
thd->query
**tables

Committing a transaction ha_commit_trans() *thd
*trans

Table 2-5. Key functions and variables involved in common MySQL operations (continued)

Operation Good place for an entry breakpoint
Interesting variables to
examine

Coding Guidelines | 37

Coding Guidelines
If you are making changes to MySQL, it is recommended that you follow the same
coding guidelines as MySQL developers. This will make it easier for your code to
work with what’s already written, help you avoid bugs, and increase the chances of
your patches being accepted by MySQL developers without serious modifications.

MySQL developers make their coding guidelines publicly available at http://dev.
mysql.com/doc/internals/en/index.html.

In addition, I will provide a reorganized summary with some extra tips and com-
ments from my own experience.

Stability
Here are some guidelines for preserving the code’s stability while making changes:

• Always remember that, more often than not, you are in a thread and must fol-
low the rules of thread-safe programming.

• Most global variables have an associated mutex that other threads will lock
before accessing it. Make sure to learn which mutex is associated with each glo-
bal variable, and lock it when accessing that variable.

• Be aware that you have very little stack space available. Chunks of memory
larger than 100 bytes or so should be allocated with sql_alloc() or my_malloc().

• When possible, choose sql_alloc() over my_malloc() for small allocations. sql_
alloc() allocates memory from a pre-allocated connection memory pool, while
my_malloc() is just a wrapper around the regular malloc() call. sql_alloc() can
be called anywhere in the stack of execution below do_command(). To verify the
stack position in question, set a breakpoint there in the debugger, and when it is
reached, run the bt command. Note that the memory allocated with sql_alloc()
lasts until the end of the query execution. If you want your allocation to persist
past that, use my_malloc().

• Perform large allocations with my_malloc(), and free the allocated blocks with
my_free() as soon as possible.

• Do not free pointers allocated with sql_alloc(). The memory pool will be freed
at once with a call to free_root() at the end of the query.

• If a pointer was allocated with my_malloc(), free it with my_free().

• Do not use exceptions. Whenever possible, the code is compiled with exceptions
disabled.

• Do not use STL, iostream, or any other C++ extension that would require link-
ing against libstdc++.

• Do not introduce dependencies on additional external libraries whenever possible.

• Try to reuse the existing MySQL code as much as possible.

http://dev.mysql.com/doc/internals/en/index.html
http://dev.mysql.com/doc/internals/en/index.html

Coding Guidelines | 38

Portability
Following these suggestions increases the likelihood that your code will work on sys-
tems other than the one you write and test on:

• Do not use direct libc calls. Instead, use the portability wrappers from mysys and
strings. Usually a wrapper call from mysys will have the same name as the libc call
prefixed with my_: for example, my_open(), my_close(), my_malloc(), my_free().

• Be aware of differences in byte order across systems. Use macros such as
int4store() and int4korr() if the data string created on one system could be
transferred to another or shared among systems in any way.

• Be aware of alignment issues. Do not assign integer values to a pointer that could
be unaligned. For example, instead of:

((char)p+1) = n

write:
memcpy((char*)p+1,&n, 4)

or for machine-independent byte-order:
int4store((char*)p+1,n);

• When introducing a system or compiler-specific optimization that might not be
supported on another system, make sure to enclose it in an #ifdef block, and
provide an alternative if that optimization is not available.

• Do not put C++ style comments into C files, even though some C compilers
support it.

• Use predefined types from include/my_global.h (e.g., uint8, uint32) if you need
to control the byte size of the variable.

Performance
The following suggestions can help you maximize your code’s memory and proces-
sor use:

• Develop a habit of thinking about performance naturally and coding that way.
Learn the basics of how the CPU works and visualize what happens to it on the
assembly level when your C/C++ code is executed.

• Reuse the existing MySQL code as much as possible.

• Be aware of what is going on inside the calls you are making.

• Avoid unnecessary system calls. Think of ways to combine several into one; for
example, use IO_CACHE functions and macros instead of my_read() and my_write().

• Avoid unnecessary instantiation of objects.

• Do not declare large functions inline.

Keeping Your BitKeeper Repository Up to Date | 39

Style and Ease of Integration
Following are some conventions established by the MySQL developers for general
consistency.

• Follow the indentation, variable naming, and commenting guidelines in
internals.html.

• Do not reformat the code you did not write. Make sure your editor is not config-
ured to do that automatically.

• In your functions, return 0 on success, and a non-zero value on failure.

• When possible, use the following syntax to call several functions short-circuiting
out if one fails:

if (a() || b() || c())
 goto err;

• Use TRUE and FALSE instead of true and false.

• Use my_bool in C and bool in C++ source files.

• Pass by pointer instead of by reference in the C++ code.

• Write optimized code even in the sections where performance is not critical.

Keeping Your BitKeeper Repository Up to Date
MySQL source keeps changing with time—a lot during the alpha stage, less during
beta, and only very little once it reaches the stable status. It is recommended that you
stay current with the recent developments whether you are just studying or are mak-
ing modifications to the MySQL source.

Instructions follow on how to update your local BitKeeper repository. This section
applies to the commercial version of BitKeeper.

1. If you have not previously committed a change, edit BitKeeper/triggers/post-commit
and replace its contents with the following:

#! /bin/sh
exit 0

This script executes every time you commit a change, and in its original version
it will notify MySQL developers and the public about the details of your change.
This notification is desirable when a MySQL developer makes a commit, but
may not be so desirable for you. If you do want the world to be notified every
time you commit, you may keep this script the way it is.

2. At the Unix shell prompt, from anywhere inside the repository tree, execute:
$ bk citool &

BitKeeper will take a couple of minutes to examine the changed files, and then it
will present a GUI dialog asking you to comment on each change you have made.

Submitting a Patch | 40

3. After you have commented your changes to each individual file, as well as to the
entire change set, press the Commit button twice and wait for the BitKeeper
window to disappear.

4. Execute the following command at the Unix shell prompt from anywhere inside
the repository tree:

$ bk pull

5. In some rather rare cases, the pull may result in conflicts. This usually happens
when you change the same lines at the same time that some MySQL developer
does. In this event, BitKeeper will print a message on the standard output about
failed conflicts and instruct you to run bk resolve. Do so, and follow the prompts
that BitKeeper gives you. If needed, refer to the BitKeeper documentation by
running bk helptool.

Submitting a Patch
If you have added a feature or fixed a bug, and would like MySQL developers to con-
sider it for submission, follow the steps in this section. The instructions assume you
have used the commercial version of BitKeeper. If you have not, you will have to diff
your source against an unmodified copy in step 1.

1. Execute the following command from the directory inside the source tree:
$ bk -r diffs -c > /tmp/mysql-patch.diff

2. Examine the contents of /tmp/mysql-patch.diff to make sure the patch makes
sense to you.

3. Send a message to internals@lists.mysql.com. If the patch is reasonably small
(under a few kilobytes), include it in the body of the message. Otherwise, post it
at a URL and include the URL in the body of the message. Make sure to include
a brief description of the patch.

41

Chapter 3 CHAPTER 3

Core Classes, Structures, Variables,
and APIs3

The MySQL source code contains several hundred thousand lines and continues to
grow. Finding your way in it is quite a challenge. However, the task is not as difficult
and daunting as it appears initially, if you are familiar with the core elements of the
code and their respective roles. The purpose of this chapter is to give you a founda-
tion that will enable you to read most sections of the code with some degree of ease.

This chapter is meant to be a literacy crash course. We will focus on the core elements
of the code that are critical to understanding what is generally going on. The more spe-
cific details of various modules will be discussed in later chapters dedicated to them.

In the discussion of the various code elements, I will inevitably have to leave out a num-
ber of less significant class members, API calls, and global variables due to space con-
straints. Additionally, by the time this book is printed, a number of new code elements
might appear, and a few might change names or functions to some extent. However, it
is reasonable to expect that such cases will be minimal. The major part of the code we
will discuss in this chapter has already stabilized and will not change significantly.

I must also note that again for reasons of space constraints we will have to leave out
a large number of vital classes, structures, and macros. However, I hope that once
you become familiar with what we have covered, you will have sufficient back-
ground to elicit the additional information through your own study of the code.

THD
The THD class defines a thread descriptor. It contains the information pertinent to the
thread that is handling the given request. Each client connection is handled by a
thread. Each thread has a descriptor object. Handling client requests is not the only
time a thread is created. MySQL has a number of system threads, such as the replica-
tion slave threads and delayed insert threads. Additionally, there exists a special case
when a thread descriptor object is created without a thread—the server running in
bootstrap mode to create the necessary system tables during installation.

42 | Chapter 3: Core Classes, Structures, Variables, and APIs

Due to the close relationship between client connections and threads, the terms
thread and connection are often used synonymously by MySQL developers. I will do
so in the discussion of this class.

THD is perhaps the most frequently referenced type in the server code. It is passed as
the first argument in most of the higher-level calls. With the exception of low-level
storage and retrieval operations, few things of significance happen inside the server
without some involvement of this class. Familiarity with its members will give you a
good idea of the overall architecture and capabilities of the server.

THD is defined in sql/sql_class.h and implemented in sql/sql_class.cc.

Most commonly, an instance of THD is pointed to by a variable thd of type THD*.
Therefore, if you are trying to find places in the code where a particular member of
this class is used, the following command will work almost without fail:

grep "thd->var_name" sql/*.cc

The class consists mostly of data members, which will be the primary focus of this
discussion. There are a few fairly simple and infrequently used methods, which we
will not discuss due to the space constraints. However, once you understand the role
of the data members we will discuss, the function of the methods will become appar-
ent to you from their source.

Table 3-1 lists the most prominent members of the THD class. Note that in version
4.1, part of THD was moved into the newly created class Statement, and THD was made
a subclass of Statement. The table also lists the public members of Statement that
were in THD and are still frequently referenced as members of THD.

Table 3-1. Members of the THD class

Member definition Description

LEX* lex Parse tree descriptor for the current query. It is a member of Statement in version 4.1
and later.

char* query Current query in plain text. In version 4.1 and later, a member of Statement.

uint32 query_length Length (in bytes) of the current query. In version 4.1 and later, a member of Statement.

Item* free_list A linked list of all parse tree nodes of the current query. Used during post-execution
cleanup (free_items() in sql/sql_parse.cc). In version 4.1 and later, a member of
Statement.

MEM_ROOT mem_root Thread memory pool. Used by alloc_root() and free_root(). In version 4.1 and
later, a member of Statement.

NET net Client connection descriptor.

MEM_ROOT warn_root Memory pool used for issuing warnings and errors. New in version 4.1.

Protocol* protocol Client/server communication protocol descriptor. Will point to a different object type
based on whether the current query is a prepared statement or not. New in version 4.1.

HASH user_vars Hash to store user variables used in queries like this:

SET @a:=31;
SELECT col1 FROM t1 WHERE col2=@a;

THD | 43

String packet Dynamic buffer used for network I/O.

struct system_
variables variables

System variables local to this connection that can be changed by the client. For example,

SET LOCAL sort_buffer_size=256000

will set the value of variables.sortbuff_size to 256,000 and affect the process-
ing of the ORDER BY and GROUP BY queries that require sorting. New in version 4.0.

Statement_map stmt_map A hash of all the prepared statements and cursors on this connection. New in version 4.1.

char* host The host the client is connecting from.

char* priv_host The client host value, which is obtained by matching the host identification from the con-
nection socket parameters against the contents of mysql.user table. In other words, the
first matching host column value from the mysql.user table. Usually the same as host.
Note that in MySQL, a user entity consists of two parts: a username and a host name. So
for example, john@localhost is separate from john@www.

char* user The user the client has passed to the access control system.

char* priv_user The user value match in the mysql.user table for the user value passed to the access con-
trol system. Usually the same as user.

char* db Currently selected database.

uint32 db_length Length of the string pointed to by db.

char* ip The IP address the client has connected from in alphanumeric form.

char* host_or_ip Points to the host the client has connected from if available, otherwise (for example, if the
reverse DNS lookup failed) points to an alphanumeric string containing the client’s IP
address.

const char* proc_info Points to the value of the Info column in the output of SHOW PROCESSLIST. Will usu-
ally be set before an operation that could take a long time. Very useful for troubleshooting
performance problems.

ulong client_
capabilities

A bit mask of client capabilities. As far as the client-server protocol is concerned, aside
from some minor limitations, all MySQL versions are forward and backward compatible.
Any client can talk to any server, regardless of the version. This variable helps the server
know how to not confuse clients of older versions. It also keeps track of whether the client
is prepared to use SSL or compression.

ulong master_access In the MySQL access control system, privileges can be granted to a user either on the glo-
bal level, or on the database, table, or column level. This variable is a bit mask of the glo-
bal privileges for the current connection.

ulong db_access Client privilege bit mask for the currently selected database on the current connection.

ulong col_access The name of the variable is somewhat misleading. One would think that just like the other
two, it would be a bit mask for some kind of column access. However, this happens to be
just a temporary variable used to determine whether the user has some privilege on a
table when processing SHOW TABLES. If she does not have any, the table will be
excluded from the output.

TABLE* open_tables Linked list of regular tables in use by this thread. A regular table is a non-temporary table
that was referenced with a higher-level query such as SELECT, UPDATE, DELETE,
INSERT, REPLACE, or ALTER. Tables used in HANDLER queries, and derived tables in
subqueries, do not fit into this category (see handler_tables and derived_
tables). Tables listed here are automatically closed at the end of the query.

Table 3-1. Members of the THD class (continued)

Member definition Description

44 | Chapter 3: Core Classes, Structures, Variables, and APIs

TABLE* handler_tables Linked list of tables opened with HANDLER OPEN by this thread. HANDLER commands
provide a direct interface to the low-level storage engine bypassing the optimizer. New in
version 4.0.

TABLE* temporary_
tables

Linked list of temporary tables created by this thread. A temporary table exists in the
scope of the given connection, and can be created either manually with CREATE
TEMPORARY TABLE, or inside the optimizer when it is unable to retrieve the results of a
SELECT by merely examining the query tables.

TABLE* derived_tables Linked list of derived tables created in this query. A derived table is a table resulting from a
sub-query in the FROM clause of a SELECT statement. For example, in

SELECT AVG(a) FROM (SELECT COUNT(*) AS a, b
FROM t1 GROUP BY b) AS t_derived WHERE n > 100

t_derived is a derived table. Note that the term derived table is not precisely defined in
the SQL standard, and therefore MySQL documentation refers more precisely to a “sub-
query in the FROM clause.” However, for historical reasons, “derived” is being used
throughout the code. New in version 4.1.

MYSQL_LOCK* lock A descriptor structure containing the list of all the tables automatically locked by this
thread without the use of the LOCK TABLES command. This type of locking occurs when
the server processes regular queries such as SELECT, INSERT, or UPDATE and the need
for a lock is discovered. Only one group of tables may be locked at any given time. The lock
must be acquired and released for the entire group at once. If set to a nonzero value,
locked_tables (see later) must be set to 0.

MYSQL_LOCK* locked_
tables

A descriptor structure containing a list of all the tables locked with LOCK TABLES. If set
to a nonzero value, lock must be set to 0.

struct st_my_thread_var
*mysys_var

A structure used to store the information about the current POSIX Threads condition that
this thread might be waiting for. Used to wake sleeping threads during shutdown or
when they are being killed with the KILL command. The condition gets artificially broad-
cast, and the threads awaken, check their killed flag, and realize that they are sup-
posed to exit. For details, see THD::enter_cond() and THD::exit_cond() in
sql/sql_class.h, as well as THD::awake() in sql/sql_class.cc. If a thread is not waiting
for anything, mysys_var is set to 0. Any time you plan to wait using a call to pthread_
cond_wait(), call THD::enter_cond() first, and once you are done waiting,
THD::exit_cond().

enum enum_server_
command command

Type of the current server command. The most common one is COM_QUERY. All possible
types are listed in include/mysql_com.h under the definition of the enum_server_
command type.

uint32 server_id This variable is used in the slave SQL thread during replication. Each server participating in
replication must be assigned a unique ID in its configuration file. When a master performs
an update, it logs the originating server ID to the binary update log. When updates are
performed by a regular client, the originating ID is the same as the server ID. However, the
slave thread must preserve the originating ID of the master to avoid infinite update loops.
If this is done, the slave can break the potentially infinite replication loop by skipping
update events that have the same ID as the server ID. By setting the value of this variable
during query initialization, the caller is able to control which server ID gets logged with
the update.

Table 3-1. Members of the THD class (continued)

Member definition Description

THD | 45

delayed_insert *di Current delayed insert descriptor. Used for processing INSERT DELAYED queries, which
permit the client to request that the rows be inserted some time in the future when the
table becomes available.

struct st_transactions
transaction

Transaction descriptor. Used to manage logical update logging, keeping track of changed
tables (for the query cache).

Statement *current_
statement

Current prepared statement descriptor. Set to 0 if there is no prepared statement. New in
version 4.1.

uint server_status A bit mask used to report status messages to the client. Examples of when status mes-
sages might occur: if the server is in the middle of a transaction, if there exists some addi-
tional query result data to retrieve, or if the query did not use a key efficiently.

ulonglong next_
insert_id

MySQL supports the generation of automatically incrementing unique keys. Only one such
key is allowed per table. The client, however, is allowed to set the value of the next gener-
ated key by executing SET INSERT_ID=value. When this command is executed,
next_insert_id is set to the specified value.

ulonglong last_insert_
id

Set to the value of the last generated automatically incrementing unique key. Available to
the client through the SQL function LAST_INSERT_ID(). Can also be set manually by
the client by executing SET LAST_INSERT_ID=value.

table_map used_tables A bit mask to keep track of which tables actually need to be examined in order to answer
the query. Heavily used by the optimizer.

USER_CONN *user_connect Descriptor of user resource limits. MySQL has the capability to restrict the number of connec-
tions and queries per hour that a particular user is allowed to perform. New in version 4.0.

CHARSET_INFO *db_
charset

Character set descriptor for the current database. New in version 4.1.

List <MYSQL_ERROR>
warn_list

Some queries may produce warnings. They will be stored in this variable and can be
viewed later with SHOW WARNINGS. New in version 4.1.

ulong query_id Internal ID of the currently executed query. Every new query will have a value one higher
than the previous query.

ulong thread_id A server-assigned numeric ID for this thread. This value shows up in the Id column of
SHOW PROCESSLIST output and is used as an argument to the KILL command.

pthread_t real_id POSIX Threads ID for this thread.

uint system_thread Set to a nonzero value indicating thread type for nonclient threads. Examples of such
threads include delayed insert threads, replication slave threads, event scheduler and
worker threads, and the NDB cluster binlog thread. Set to 0 for client threads.

bool slave_thread Set to 1 (true) for slave threads.

bool bootstrap Set to 1 (true) for the bootstrap thread. The bootstrap thread is not really a thread. When
mysqld is started with the –bootstrap option, it merely executes queries read from
the standard input, and exits once the standard input is closed. However, an instance of
THD is created and marked as a special case by setting this variable. The bootstrap execution
mode is used during installation to create the system tables necessary for server operation.

bool volatile killed Set to 1 (true) when a thread is asked to terminate. Each thread is responsible for checking
this variable frequently during time-consuming operations. If set, the thread must per-
form the cleanup as quickly as possible and exit.

Table 3-1. Members of the THD class (continued)

Member definition Description

46 | Chapter 3: Core Classes, Structures, Variables, and APIs

NET
The NET structure defines a network connection descriptor. MySQL uses a fairly com-
plex protocol on top of the one already provided by the operating system for client/
server communication. This structure lies at the core of the protocol’s implementation.

The protocol defines its own packet format. A packet can send a command, a mes-
sage, or a block of data. Packets can be compressed, or transmitted over the SSL
layer.

All network communication functions use NET one way or the other, usually by
accepting it as an argument. Becoming familiar with the members of NET is a major
step toward understanding the client/server communication protocol.

NET is a rather small structure, which permits us to cover it in its entirety. It is defined
in include/mysql_com.h. The same definition is also used by the client library, which
is written in C. This would exclude any possibility for NET to have any methods.
However, there are a number of functions that accept NET* as an argument, which
will be covered in Chapter 5.

Table 3-2 lists the NET members.

Table 3-2. Members of the NET class

Member definition Description

Vio* vio Low-level network I/O socket descriptor. V stands for virtual. The VIO
abstraction was originally created to support SSL. Now it is also used to sup-
port Windows shared memory and named pipe connections. It also facili-
tates cross-platform porting in many other ways.

unsigned char *buff Start of the data buffer.

unsigned char *buff_end End of the data buffer.

unsigned char* write_pos Points to the position in the data buffer from which the next write will take
the data.

unsigned char* read_pos Points to the position in the data buffer to which the next read will put the
data.

my_socket fd A variable needed to support Perl DBI/DBD client interface. Contains the
number of the operating system socket descriptor.

unsigned long max_packet Current size of the network packet buffer. Initially set to the value of
net-buffer-length configuration variable, but may be increased to
accommodate a larger packet up to the value of max-allowed-packet
configuration variable.

unsigned long max_packet_size Maximum allowed packet size on this connection. Set to the value of max-
allowed-packet configuration variable.

unsigned int pkt_nr Current packet sequence number for the uncompressed protocol. Packet
sequence numbers are mainly used for sanity checks in the protocol. An
out-of-order packet sequence number can be caused only by a bug, barring
hardware and operating system problems.

NET | 47

unsigned int compress_pkt_nr Current packet sequence number for the compressed protocol.

unsigned int write_timeout Maximum amount of time one network write operation is allowed to take
before it times out with an error. Set to the value of net-write-
timeout configuration variable.

unsigned int read_timeout Maximum amount of time one network read operation is allowed to take
before it times out with an error. Set to the value of net-read-timeout
configuration variable.

unsigned int retry_count How many times a failed network I/O operation should be retried before
considering that it has failed. Many platforms interrupt potentially success-
ful network I/O with an error for a number of peculiar reasons. Failing once,
therefore, is not a good reason to give up. Set to the value of net-retry-
count configuration variable.

int fcntl Currently not used. Might be removed in future versions.

my_bool compress Set to 1 when data compression is used.

unsigned long remain_in_buf In the compressed protocol, the reading peer will attempt a read from the
socket that may exceed the compressed length of the packet. Thus, it will
read a portion of the next packet. This variable keeps track of how many
extra bytes were read. When compression is not enabled, the reading peer
will try only the exact length of the packet after reading the header first. No
extra bytes will be read, so this variable is not used if there is no compres-
sion. However, this algorithm is not very efficient for small packets. It is rea-
sonable to suppose that it will be optimized in the future to attempt a
larger read from the start. If this happens, it is very likely that this variable
will be used to keep track of how many bytes past the first packet boundary
have been read.

unsigned long length Contains the length of the current packet in bytes. Does not include the
header.

unsigned long buf_length Contains the length of the packet buffer. Not to be confused with the length
of the packet itself, which for instance does not include the header. Addi-
tionally, the buffer may contain a carryover from the next packet if com-
pression is used.

unsigned long where_b The value ofread_pos–buff, or in other words, the offset of the current
reading position in the buffer.

unsigned int *return_status Points to the server_status variable in the THD thread descriptor asso-
ciated with the connection.

unsigned char reading_or_writing Set to 0 when there is no ongoing I/O operation, to 1 when a read is in
progress, and 2 when a write is in progress. Used in the handling of SHOW
PROCESSLIST query.

char save_char Some client routines can achieve better performance if they can assume a
zero byte immediately after the end of the packet data in the buffer. When
compression is used, that byte is not safe to overwrite with a zero without
saving it first. This variable is used to save that byte and restore it later.

my_bool no_send_ok Most of the time, a successful operation on the server is reported with the
OK packet to the client. However, sometimes this is not desirable. If this
variable is set to 1, no OK packet will be sent.

Table 3-2. Members of the NET class (continued)

Member definition Description

48 | Chapter 3: Core Classes, Structures, Variables, and APIs

TABLE
The TABLE structure defines a database table descriptor. A table can exist in an open
or closed state. In order to be used in the server, it has to be opened. Whenever this
happens, a table descriptor is created, and placed in the table cache to be reused later
when another request is made that references the same table.

Instances of TABLE are frequently referenced in the parser, optimizer, access control,
and query cache code. It glues things together in a number of ways. Studying its
members is a good way to become acquainted to a degree with the low-level details
of the server implementation.

This structure is defined in sql/table.h as struct st_table, but then is aliased to TABLE
with a typedef in sql/handler.h.

Note that in version 5.1 TABLE was refactored, and portions of it were moved to
TABLE_SHARE class, which is shared between the instances of the same physical table.
TABLE_SHAREs are cached in the table definition cache.

TABLE is a large structure. We will cover only the most essential parts. Table 3-3 lists
some of its members.

char last_error[MYSQL_ERRMSG_
SIZE]

A buffer containing the text of the last error message sent to the client. If
there was none, the first byte will be set to 0.

char sqlstate[SQLSTATE_LENGTH+1] Buffer containing the value of SQL state used by ODBC and JDBC drivers.
New in version 4.1. In earlier versions, the drivers had to figure out the state
themselves from the value of the error code. Since 4.1, the server does it for
them.

unsigned int last_errno The value of MySQL error code from the last error message sent to the cli-
ent. Set to 0 if there was no error.

unsigned char error Set to 0 if the I/O operation happened successfully, to 1 if there was some
logical error on the protocol level, to 2 if there was a system call or standard
library failure, and to 3 in a special case when a large packet is successfully
skipped after a failed attempt to expand the buffer to accommodate it.

gptr query_cache_query Used for proper synchronization between the network I/O code and the
query cache. New in version 4.0.

my_bool report_error Set to 1 if the error should be reported to the client.

my_bool return_errno Set to 1 if the MySQL error code value should be reported to the client. In
version 4.1, this would also include the reporting of SQL state.

Table 3-2. Members of the NET class (continued)

Member definition Description

TABLE | 49

Table 3-3. Members of the TABLE class

Member definition Description

handler *file Pointer to the storage engine (handler) object for this table. The object is
used for all low-level data storage and retrieval operations.

Field **field Array of field descriptors for each field in this table. The number of fields in
the fields variable.

HASH name_hash A hash for locating fields by name. Will be used if the number of fields is at
least MAX_FIELDS_BEFORE_HASH, which is currently defined in sql/
mysql_priv.h and set to 32.

byte *record[2] A pair of temporary buffers used for record operations by the optimizer.

uint fields Number of fields in the table.

uint reclength Length of the record in bytes. Note that this refers to the length of the record
when it is processed in memory on the optimizer level, not when it is stored
by the storage engine.

uint rec_buff_length Length of the temporary buffer allocated for manipulating one record.

uint keys Number of keys in the table.

uint key_parts A column that is a part of a key is called key part in MySQL terminology. This
variable stores the number of key parts. A column is counted once for each
key it is a part of.

uint primary_key Array index of the primary key in the key array. 0 if the primary key exists,
and MAX_KEY otherwise, which is defined to be 64 in versions 4.1 and later,
and 32 in 4.0 and earlier. The location of the definition is sql/unireg.h.

uint null_fields Number of fields in the table that can contain NULL values.

uint blob_fields Number of fields of type BLOB or TEXT in the table.

key_map keys_in_use A map showing which keys are available for use in queries. This would
include all the keys present in the table that have not been taken offline with
ALTER TABLE... DISABLE KEYS or some other way. Note that in 4.0
and earlier, the map is implemented through a simple bit mask. Starting in
4.1, key_map became an object to meet the need to support a large num-
ber of keys.

key_map quick_keys A map of keys that can be used for range optimizations for the current query.
If we have a key on last_name, for example, then SELECT * FROM
phonebook WHERE last_name > 'A' AND last_name < 'B'
permits a range optimization if the storage engine supports reading keys
based on a range.

key_map used_keys A map of keys that can be used in the current query. This is basically the
value of keys_in_use after some filtering that comes from taking into
account the FORCE KEY and IGNORE KEY directives in the query.

key_map keys_in_use_for_query A map of keys that can be used for the query according to the FORCE KEY
and IGNORE KEY directives.

KEY *key_info Array of key descriptors for the table. The length of the array is stored in the
variable keys.

50 | Chapter 3: Core Classes, Structures, Variables, and APIs

TYPELIB keynames A lookup table to find the key number by its name.

ha_rows max_rows The value of MAX_ROWS that the table was created with. This is not neces-
sarily a hard limit on how many rows the table can have, but more of a hint
to help the storage engine figure out the best record storage format.

ha_rows min_rows The value of MIN_ROWS that the table is created with. Currently stored in
the table definition file (.frm), but otherwise not used.

ulong avg_row_length The value of AVG_ROW_LENGTH that the table is created with. This is a hint
to the storage engine as to what the average length of a record in a variable
length record table is expected to be.

TYPELIB fieldnames A lookup table to find the field number by its name.

enum db_type db_type Storage engine type for this table.

enum row_type row_type Indicates whether the record is fixed length or dynamic length.

uint db_create_options A bit mask of options the table was created with.

uint db_stat A bit mask of various capabilities and operations for this table.

uint status A bit mask showing the status of the last record operation. Provides an idea
of what is found in the record variable.

enum tmp_table_type tmp_table Set to NO_TMP_TABLE for non-temporary tables, TMP_TABLE for non-
transactional temporary tables, and TRANSACTIONAL_TMP_TABLE for
transactional temporary tables.

my_bool force_index Set to 1 if this table has an index that was referenced with a FORCE INDEX
directive in the current query.

my_bool key_read A flag used by the optimizer to mark that a key will be used to retrieve the
data from this table in the current query.

my_bool db_low_byte_first Indicates the byte order of integer fields for the storage engine of this table.
Set to 1 if the low byte goes first.

my_bool fulltext_searched A flag used by the optimizer to mark that the table will be searched with a
full-text key lookup.

my_bool crashed This flag is set to 1 if at any point the storage engine reports that the internal
structure of the table is corrupt.

my_bool no_keyread A flag to communicate to the optimizer that keys should not be used to read
from this table because of some special case situation.

Field *next_number_field If the field has an auto-increment field (there can be only one), points to its
descriptor. Otherwise, it is set to 0.

Field_timestamp *timestamp_
field

If the field has a timestamp field (there can be only one), this points to its
descriptor. Otherwise, it is set to 0.

CHARSET_INFO *table_charset The descriptor of the character set of this table.

MEM_ROOT mem_root Memory pool used for various members of the table descriptor.

GRANT_INFO grant Access control information descriptor for this table.

char *table_cache_key Hash key value used for locating this table descriptor in the table cache. It is
formed by concatenating database name, '\0', table name, '\0', and an
optional string for temporary tables. So table_cache_key is often used
in the code to reference the name of the database.

Table 3-3. Members of the TABLE class (continued)

Member definition Description

Field | 51

Field
The Field class defines a field descriptor. It is actually a base abstract class for a
number of subclasses defined for each specific field type, such as integer, string, or
timestamp.

This class naturally plays a critical role in the parser and optimizer, because most of
the operations in processing a query involve table fields.

Field is defined in sql/field.h, and partially implemented in sql/field.cc. The imple-
mentation is partial because it is an abstract class. Its subclasses, which all have
names beginning with Field_, complete the implementation.

char *table_name If the table is not aliased, same as real_name. Otherwise, the name of the
alias. For example, in SELECT t1.* FROM names AS t1, this variable is
set to t1.

char *real_name The name of the table. If aliased, the nonaliased name. See example under
table_name.

char *path The full path to the table’s .frm file on the filesystem without the .frm exten-
sion relative to datadir. For example, if the table is in the database db1,
and the name of the table is t1, this variable is set to ./db1/t1.

uint key_length The length of table_cache_key in bytes.

table_map map During a join, each table instance is assigned a number. This variable is a bit
mask with the one bit corresponding to the table number set, and all others
cleared.

ulong version Used to check if the table cached in memory is up to date. If another thread
performs FLUSH TABLES, the table descriptor is no longer valid. This is
detected by comparing the value of this variable against the global
refresh_version.

FILESORT_INFO sort Descriptor structure used for record pointer sorting. Utilized in solving
GROUP BY and ORDER BY queries.

ORDER *group Used by the optimizer for solving GROUP BY queries through a temporary
table. If this technique is used, the appropriate key is created in the tempo-
rary table. In that case this field is set to the descriptor of the GROUP BY
expression.

ha_rows
quick_rows[MAX_KEY]

Used by the range optimizer to store the estimate of how many records the
key range will match for each key in the table.

ulong query_id The ID of the query that is currently using this table descriptor.

uchar frm_version Version of the table definition file (.frm) format.

THD *in_use Points to the descriptor of the thread that is currently using this table.

struct st_table *next Points to the next table in the linked list of tables.

struct st_table *prev Points to the previous table in the linked list of tables.

Table 3-3. Members of the TABLE class (continued)

Member definition Description

52 | Chapter 3: Core Classes, Structures, Variables, and APIs

This class has only a few data members, but on the other hand does contain many
methods. We will, therefore, cover all of the data members, and only the most
important methods. Table 3-4 lists the members of Field.

Table 3-4. Members of the Field class

Member definition Member description

char *ptr Points to the field data in the in-memory copy of the record.

uchar *null_ptr Points to the byte in the in-memory copy of the record that contains the
bit indicating whether the value of this field is NULL.

const char *table_name The name of the table containing this field.

const char *field_name The name of this field.

LEX_STRING comment The contents of the comment on this field. The comment can be entered in
the CREATE TABLE statement when the field is defined; for example,
CREATE TABLE t1 (n INT COMMENT 'some integer value').

ulong query_id The ID of the query currently using this field descriptor.

key_map key_start If the nth bit of this bit mask is set, this field is the first part of the nth key
in the table.

key_map part_of_key If the nth bit of this bit mask is set, this field is a part of the nth key in the
table.

key_map part_of_sortkey If the nth bit of this bit mask is set, this field is a part of the nth key in the
table, and the key is capable of being traversed in the ascending or
descending order of its values. This would be the case for a B-tree key, but
not for a hash or full-text key, for example.

utype unireg_check Field type code stored in the table definition file (.frm).

uint32 field_length Maximum length in bytes of the data that can be stored in this field.

uint16 flags A bit mask of the special attributes of the field set in the field definition in
CREATE TABLE, for example NOT NULL, AUTO INCREMENT, or
ZEROFILL.

uchar null_bit A bit mask with just one bit set, corresponding to the bit in the record prefix
that indicates that the value of this field is NULL. See also null_ptr.

int store(const char *from, uint
length, CHARSET_INFO *cs)

Stores the string pointed to by from in the in-memory copy of the record
associated with this field descriptor.

int store(double nr) Stores the value of the double precision floating-point number nr in the
in-memory copy of the record associated with this field descriptor.

int store(longlong nr) Stores the value of the 64-bit integer number nr in the in-memory copy of
the record associated with this field descriptor.

void store_time(TIME
*ltime,timestamp_type t_type)

Stores the time value specified by ltime in the in-memory copy of the
record associated with this field descriptor.

double val_real(void) Returns the value stored in the in-memory copy of the record associated
with this field descriptor, converting it to a double-precision floating-point
number.

Field | 53

String *val_str(String *str) Returns the value stored in the in-memory copy of the record associated
with this field descriptor, converting it to a string. The value is stored in the
argument-supplied buffer. Note that the caller must pass a pointer to a
preallocated String object. Calling val_str() with str set to 0 will
result in a crash.

Item_result result_type () Returns the data type stored in the field. Currently used by the range opti-
mizer to decide whether the range optimization would be appropriate. For
example, if a is a string, we have a key on a, and the query is SELECT *
FROM t1 WHERE a > 1 AND a < 5, then reading the keys in the
('1','5') range would give incorrect results if we have a record with a
equal to '10'. Because a is stored as a string, the key order will be lexico-
graphic, and '10' would make it into the range. However, the syntax of
the query asks for a numeric comparison. So the record with a equal to
'10' should be excluded.

Item_result cmp_type () Returns the data type stored in the field that should be examined to decide
how comparisons with other values should be made. Usually the same as
result_type(). One exception is timestamps. Theirresult_type()
isSTRING_RESULT, while theircmp_type() isINT_RESULT. This is so
that they could be compared with integers as integers rather than convert-
ing the integer to a string and performing string comparisons.

void reset(void) Clears the value set in the in-memory copy of the record associated with
this field descriptor.

bool binary() Reports whether the comparisons of field values are performed in a binary
or the byte-for-byte manner. A char(N) field with default attributes, for
example, would not be such a field: the comparison is case-insensitive,
and the trailing spaces are ignored.

uint32 key_length() Returns the length of the field for the purpose of in-memory operations on
keys.

enum_field_types type() Returns the field type in the table definition context.

int cmp(const char *str) Returns the result of comparison of str against the value in the in-
memory copy of the record associated with this field descriptor. Returns
–1 if the field value is less than str, 0 if they are equal, and 1 if the field
value is greater than str. str is assumed to be field_length bytes
long.

int key_cmp
(const byte *str, uint length)

Returns the result of comparison of str against the value in the in-
memory copy of the record associated with this field descriptor in the
context of keys. Returns –1 if the field value is less than str, 0 if they
are equal, and 1 if the field value is greater than str.

bool is_null(uint row_offset=0) Returns true if the value of the field in the in-memory copy of the record
associated with this field descriptor is NULL in the SQL sense.

void set_null(int row_offset=0) Marks the field value in the in-memory copy of the record associated with
this field descriptor as NULL in the SQL sense.

bool maybe_null(void) Returns true if the field could contain NULL values in the SQL sense.

void move_field(char *ptr_arg) Redirects the internal field data pointer to a different location.

Table 3-4. Members of the Field class (continued)

Member definition Member description

54 | Chapter 3: Core Classes, Structures, Variables, and APIs

Utility API Calls
A number of core jobs, such as memory allocation, string operations, or file manage-
ment, are performed by a group of internal API calls. Due to portability require-
ments, the standard C library is used very sparingly, and the C++ libraries are not
used at all.

There are a large number of utility functions. I cannot cover them all in this book,
but I provide a representative sample in Table 3-5.

Table 3-5. Common utility functions

Prototype Defined in Description

gptr my_malloc
(uint Size, myf MyFlags)

mysys/my_malloc.c Portability wrapper around malloc(). Used for
allocating memory blocks for global buffers and
other objects that have a lifetime of more than one
query, as well as large memory blocks.

void my_free
(gptr ptr, myf MyFlags)

mysys/my_malloc.c Frees the blocks allocated with my_malloc().
Note that my_free() has evolved into a macro
alias for my_no_flags_free(), so you should
look for the definition ofmy_no_flags_free()
rather than my_free() in mysys/my_malloc.c.
Nevertheless, my_free() is still what is used
throughout the code to free memory blocks.

gptr my_multi_malloc
(myf myFlags, ...)

mysys/mulalloc.c Allocates memory for a set of pointers, and points
each to its respective part of one big block. Consider
the example:

char *p1,*p2,*block;
if (!(block = my_multi_malloc
(MYF (MY_WME),
&p1,10,&p2,20,NULL))
 goto err;

block points to the start of the allocated block,p1
points to a part of it with 10 bytes reserved, and p2
points to another part with 20 bytes reserved.
When the work is done, block should be freed
using my_free().

void init_alloc_root
(MEM_ROOT *mem_root, uint
block_size,
uint pre_alloc_size)

mysys/my_alloc.c Initializes the memory pool with the descriptor
pointed to by mem_root.

gptr alloc_root
(MEM_ROOT *mem_root,
unsigned int Size)

mysys/my_alloc.c Allocates memory from the pool specified by mem_
root. Returns a pointer to the allocated block, or 0 on
failure.

void free_root
(MEM_ROOT *mem_root,
myf MyFlags)

mysys/my_alloc.c Frees the memory pool associated with mem_root.

File my_open
(const char *FileName,
int Flags, myf MyFlags)

mysys/my_open.c A wrapper around open(). The last argument
contains MySQL API-specific flags. TheFile type is
an alias for int.

Utility API Calls | 55

int my_close
(File fd, myf MyFlags)

mysys/my_open.c A wrapper around close(). The last argument
contains MySQL API-specific flags.

uint my_read
(File Filedes, byte
*Buffer, uint Count,
myf MyFlags)

mysys/my_read.c A fairly extensive wrapper around read().
Among other capabilities, this will keep reading
until all of the Count bytes have been read suc-
cessfully if MY_FULL_IO is set in MyFlags.

uint my_write
(int Filedes, const byte
*Buffer, uint Count, myf
MyFlags)

mysys/my_write.c A fairly extensive wrapper around write(). Will
keep writing until all the Count bytes have been
written. If MY_WAIT_IF_FULL is present in
MyFlags, will wait for the disk space to become
available instead of just failing when the disk is full.

int init_io_cache
(IO_CACHE *info, File file,
uint cachesize,
enum cache_type type,
my_off_t seek_offset,
pbool use_async_io,
myf cache_myflags)

mysys/mf_iocache.c Initializes the descriptor for an I/O cache. An I/O
cache is somewhat similar to the standard C library
structure FILE. Returns 0 on success, and a non-
zero value of failure.

int my_b_read
(register IO_CACHE *info,
byte *Buffer,
uint Count)

mysys/mf_iocache.c Reads from the I/O cache associated with info.
Technically speaking, this is actually a preprocessor
macro that is aliased to the _my_b_read() func-
tion when there is not enough data in the cache
buffer to satisfy the request. Returns 0 on success,
and a nonzero value of failure.

int my_b_write
(register IO_CACHE *info,
const byte *Buffer, uint
Count)

mysys/mf_iocache.c Writes to the I/O cache associated with info. Tech-
nically speaking, this is actually a preprocessor
macro which is aliased to the _my_b_write()
function when there is not enough space in the
buffer, and a physical write is required to satisfy the
request. Returns 0 on success, and a nonzero value
of failure.

int flush_io_cache
(IO_CACHE *info)

mysys/mf_iocache.c Writes out the data from the memory buffer to the
file descriptor. Note that flush_io_cache() is
actually a macro alias for my_b_flush_io_
cache(). Returns 0 on success, and a nonzero
value of failure.

int end_io_cache
(IO_CACHE *info)

mysys/mf_iocache.c Closes the cache associated with the descriptor,
performing all necessary cleanup.

my_string fn_format
(my_string to, const char
*name, const char *dir,
const char *extension, uint
flag)

mysys/mf_format.c Constructs a path to the file, possibly adjusting the
extension. The arguments should be formatted in
the Unix style with forward slashes. On Windows,
the slashes will be reversed in the result. The flags
in the last argument allow a number of file path
operations. For example, if MY_RESOLVE_
SYMLINKS is set, the resulting path written to the
to argument will have the symbolic links followed
and resolved.

Table 3-5. Common utility functions (continued)

Prototype Defined in Description

56 | Chapter 3: Core Classes, Structures, Variables, and APIs

my_bool hash_init
(HASH *hash,CHARSET_INFO
*charset, uint size,
uint key_offset, uint key_
length, hash_get_key get_
key, void (*free_
element)(void*))

mysys/hash.c Initializes a hash descriptor. Returns 0 on success, and
a nonzero value on failure. Note thathash_init()
is actually a macro alias for _hash_init(). The
method of obtaining the hash key for the given record
may be specified with the key_offset andkey_
length arguments, or by the function pointer get_
key.

gptr hash_search
(HASH *hash,const byte
*key, uint length)

mysys/hash.c Finds the first record in the hash that is associated
with the specified key value. Returns a pointer to
the record on success, and 0 on failure.

gptr hash_next
(HASH *hash, const byte
*key, uint length)

mysys/hash.c Finds the next record in the hash that is associated
with the specified key value. Should be called
repeatedly after the initial call to hash_
search() for the retrieval of subsequent
records associated with the key. Returns a pointer
to the record on success. On failure (no more
records), returns 0.

my_bool my_hash_insert
(HASH *info,const byte
*record)

mysys/hash.c Inserts the record pointer into the hash. Returns 0 on
success, and a nonzero value of failure. In the past,
the function was called hash_insert(). How-
ever, it was renamed due to a namespace conflict.

my_bool hash_delete
(HASH *hash,byte *record)

mysys/hash.c Deletes the record pointer from the hash. Note that
the actual pointer value—not the key— is com-
pared, and only one record is deleted.

void hash_free
(HASH *hash)

mysys/hash.c Frees the hash associated with the descriptor per-
forming all necessary cleanup.

my_bool init_dynamic_
array(DYNAMIC_ARRAY *array,
uint element_size,
uint init_alloc,
uint alloc_increment)

mysys/array.c Initializes a dynamic array descriptor. Note that
unlike in the hash, the operations are conducted
on the element data, as opposed to pointer refer-
ences. So, it becomes necessary to know the size of
the element.

my_bool insert_
dynamic(DYNAMIC_ARRAY
*array, gptr element)

mysys/array.c Inserts an element into the dynamic array. Note that
the second argument is a pointer from which the
data will be copied into the array upon insertion.

void get_dynamic(DYNAMIC_
ARRAY *array, gptr element,
uint idx)

mysys/array.c Copies the element data at index idx to the
address pointed to by element. Note that
element must point to a location with sufficient
memory to cover the size of array element.

void delete_dynamic
(DYNAMIC_ARRAY *array)

mysys/array.c Frees the dynamic array resources and invalidates
the descriptor. Used for cleanup after the caller is
done using the array.

char *strmov
(char *dst, const char *src)

strings/strmov.c Like strcpy(), except the return value points to
the new terminating null character of dst.

Table 3-5. Common utility functions (continued)

Prototype Defined in Description

Preprocessor Macros | 57

Preprocessor Macros
MySQL makes heavy use of the C preprocessor. A number of tasks are complex
enough to justify some form of an alias rather than being spelled out in the code, but
are still too simple to justify a function. Other tasks are performed differently—or in
some cases, not at all—depending on the compilation options. Such tasks are per-
formed with a preprocessor macro. Table 3-6 lists the most frequently used.

char* strxmov
(char *dst, char* src1, ...)

strings/strxmov.c Concatenates all of the arguments from the second
to the next to last into dst, terminating it with a
null character. The last argument must be NullS.
Returns a pointer to the terminating null character
of the result.

int my_snprintf
(char* to, size_t n, const
char* fmt, ...)

strings/my_vsnprintf.c A stripped-down implementation ofsnprintf().
snprintf() is a very nice function for securely
copying formatted strings into buffers of restricted
length. However, it is not available on all platforms.
my_snprintf() also contains additional features
not available in the standard implementation of
snprintf().

gptr sql_alloc(uint Size) sql/thr_malloc.cc Allocates memory from the pool of the current
thread descriptor. Should be used for all small
memory allocations while processing a query. Note
that all blocks allocated with sql_alloc() are
freed when the query is finished. It is neither neces-
sary nor possible to free individual blocks allocated
with sql_alloc(). If a block is used for a longer
duration, or if it is large, it should be allocated with
my_malloc() and freed with my_free().

my_string ip_to_hostname
(struct in_addr *in,
uint *errors)

sql/hostaname.cc Converts the address structure into a string repre-
sentation of the host, resolving it if possible. Unre-
solved IP addresses are converted into a string
representation.

Table 3-6. Common preprocessor macros

Macro Defined in Description

sint2korr(A) include/my_global.h Returns a signed 2-byte integer stored at the location A with the
low byte first. On a little-endian architecture, the macro is a mere
pointer dereference. However, on a big-endian system it has to
perform a computation to return the correct value.

sint3korr(A) include/my_global.h Returns a signed 3-byte integer stored at the location A with the
low byte first.

sint4korr(A) include/my_global.h Returns a signed 4-byte integer stored at the location A with the
low byte first.

Table 3-5. Common utility functions (continued)

Prototype Defined in Description

58 | Chapter 3: Core Classes, Structures, Variables, and APIs

sint5korr(A) include/my_global.h Returns a signed 5-byte integer stored at the location A with the
low byte first.

sint8korr(A) include/my_global.h Returns a signed 8-byte integer stored at the location A with the
low byte first.

uint2korr(A) include/my_global.h Returns an unsigned 2-byte integer stored at the location A with
the low byte first.

uint3korr(A) include/my_global.h Returns an unsigned 3-byte integer stored at the location A with
the low byte first.

uint4korr(A) include/my_global.h Returns an unsigned 4-byte integer stored at the location A with
the low byte first.

uint5korr(A) include/my_global.h Returns an unsigned 5-byte integer stored at the location A with
the low byte first.

uint8korr(A) include/my_global.h Returns an unsigned 8-byte integer stored at the location A with
the low byte first.

int2store(T, A) include/my_global.h Stores the value of A in 2 bytes starting at the location T with the
low byte first regardless of the machine byte order.

int3store(T, A) include/my_global.h Stores the value of A in 3 bytes starting at the location T with the
low byte first regardless of the machine byte order.

int4store(T, A) include/my_global.h Stores the value of A in 4 bytes starting at the location T with the
low byte first regardless of the machine byte order.

int5store(T, A) include/my_global.h Stores the value of A in 5 bytes starting at the location T with the
low byte first regardless of the machine byte order.

int8store(T, A) include/my_global.h Stores the value of A in 8 bytes starting at the location T with the
low byte first regardless of the machine byte order.

LINT_INIT(var) include/my_global.h Some variables in the code are normally not initialized, while some
programming error detection tools think they should be. Rather
than waste the CPU by initializing them all the time, this macro
exists to initialize them when the use of one of those tools is
detected, or when FORCE_INIT_OF_VARS is defined.

swap_variables
(t, a, b)

include/my_global.h Swaps the contents of the variables a and b of type t.

set_if_
bigger(a, b)

include/my_global.h Sets the value of a to b if b is greater than a.

set_if_
smaller(a, b)

include/my_global.h Sets the value of a to b if b is less than a.

test_all_
bits(a, b)

include/my_global.h Returns a nonzero value if all the bits set in a are also set in b.

array_
elements(A)

include/my_global.h Returns the number of elements in the array A.

current_thd sql/mysql_priv.h Returns a pointer to the THD object associated with the current
thread.

IF_WIN(A, B) sql/mysql_priv.h Expands intoA on Windows and OS/2, and intoB on all other systems.

PREV_BITS
(type, A)

sql/mysql_priv.h Returns a bit mask of type type with the lowest A bits set and
others cleared.

Table 3-6. Common preprocessor macros (continued)

Macro Defined in Description

Global Variables | 59

Global Variables
MySQL code uses a large number of global variables for various purposes: configura-
tion settings, server status information, various data structures shared among
threads, and other things. Studying the global variables provides numerous insights
on the server architecture. Often the very existence of the variable concisely tells a
story about how and why different components work together.

Table 3-7 summarizes the most commonly used global variables. Many of those were
moved under the system_status_var structure in version 5.0.

Table 3-7. Commonly used global variables

Variable definition Defined in Description

char *mysql_data_home sql/mysqld.cc Points to the path of the data directory, which is set by the
datadir configuration parameter.

char server_version
[SERVER_VERSION_LENGTH]

sql/mysqld.cc Contains the server version string displayed in the connec-
tion greeting and in the log; for example, mysql-4.1.5-log.

char mysql_charsets_dir
[FN_REFLEN]

sql/mysqld.cc Contains the path to the configuration directory holding
the character set definition files. The value is set by the
character-sets-dir configuration parameter.

ulong refresh_version sql/mysqld.cc The value gets incremented every time the database
administrator issues the FLUSH TABLES command.
When a request is made to use an already open table, the
value of table->refresh_version is checked
against the global refresh_version to determine
whether the table needs to be reloaded.

ulong thread_id sql/mysqld.cc A counter used for assigning unique ID values to the
newly created threads. Each time a new thread is created,
the current value of thread_id is assigned, and then
the value is incremented by 1.

ulong query_id sql/mysqld.cc A counter used for assigning unique ID values to the new
requests. Each time a new request is processed, the cur-
rent value ofquery_id is assigned, and then the value is
incremented by 1.

ulong opened_tables sql/mysqld.cc A counter that keeps track of how many table-opening
operations were performed since the start of the server.
The value is displayed in the output of SHOW STATUS
under Opened_tables. Not to be confused with the
value of Open_tables, which is the number of tables
currently in the table cache.

ulong created_tmp_tables sql/mysqld.cc A counter that keeps track of how many temporary tables
were created since the start of the server. The value is dis-
played in the output of SHOW STATUS under Created_
tmp_tables.

60 | Chapter 3: Core Classes, Structures, Variables, and APIs

ulong created_tmp_disk_
tables

sql/mysqld.cc When possible, MySQL will try to keep the temporary
table it creates in memory. However, it is not possible in
some situations due either to the table size or the limita-
tions of the in-memory storage engine. Then the table is
created on disk, and this counter is incremented. The
value of this counter is displayed in the output of SHOW
STATUS under Created_tmp_disk_tables.

ulong aborted_threads sql/mysqld.cc Keeps track of the number of connections that were ter-
minated abnormally after they have been successfully
established. The value is displayed in the output of SHOW
STATUS under Aborted_clients.

ulong aborted_connects sql/mysqld.cc Keeps track of the number of attempted connections that
failed to progress past the authentication stage and reach
the status of being able to issue requests. The value is dis-
played in the output of SHOW STATUS under Aborted_
connects.

ulong query_cache_size sql/mysqld.cc New in version 4.0. Size of the query cache. Set by the
query-cache-size configuration variable.

ulong server_id sql/mysqld.cc Each server participating in replication must have a
unique ID among its replication peers. This variable con-
tains the ID value for this server. Set by the server-id
configuration parameter.

ulong max_connections sql/mysqld.cc Contains the limit on the maximum number of simulta-
neous connections the server will accept. Set by the max-
connections configuration variable.

ulong long_query_count sql/mysqld.cc Counts the queries that were deemed slow by the opti-
mizer. Displayed in the output of SHOW STATUS under
Slow_queries.

ulong what_to_log sql/mysqld.cc Contains a bit mask of SQL commands that ought to be
logged to the server activity log. This is currently an inter-
nal variable that cannot be set by the user.

ulong com_stat
[(uint) SQLCOM_END]

sql/mysqld.cc An array of counters for the different types of SQL com-
mands. Can be viewed by the user with SHOW STATUS
LIKE 'Com_%'.

bool abort_loop sql/mysqld.cc A flag set during shutdown to signal to all looping areas of
code that it is time to exit the loop.

bool shutdown_in_progress sql/mysqld.cc A flag set during server shutdown. Primarily used to avoid
initiating the shutdown process more than once.

uint thread_count sql/mysqld.cc Total number of threads currently existing in the server.
Displayed in the output of SHOW STATUS under
Threads_connected.

uint thread_running sql/mysqld.cc Total number of threads currently serving a request. Note
that some of the existing threads might be just waiting
for a request instead of processing one. Displayed in the
output of SHOW STATUS under Threads_running.

Table 3-7. Commonly used global variables (continued)

Variable definition Defined in Description

Global Variables | 61

MYSQL_LOG mysql_log sql/log.cc The log object associated with the plain text activity log.

MYSQL_LOG mysql_bin_log sql/log.cc The log object associated with the binary update log.

MYSQL_LOG mysql_slow_log sql/log.cc The log object associated with the slow query log.

pthread_mutex_t LOCK_open sql/mysqld.cc The lock variable for protecting critical regions that oper-
ate on the table cache and perform other operations
related to opening a table that require mutual exclusion.

pthread_mutex_t LOCK_
thread_count

sql/mysqld.cc The lock variable for protecting critical regions that create
or remove threads.

pthread_mutex_t LOCK_status sql/mysqld.cc The lock variable for protecting critical regions that read
or modify the status variables visible via SHOW STATUS.

pthread_cond_t COND_refresh sql/mysqld.cc The POSIX Threads broadcast condition used for signaling
to the waiting threads that the state of a table was
changed in some way.

pthread_cond_t COND_thread_
count

sql/mysqld.cc The POSIX Threads broadcast condition used for signaling
to the waiting threads that a new thread was created, or
an old one was destroyed.

I_List<THD> threads sql/mysqld.cc A list of all threads that currently exist in the server. Can
be viewed by the user with SHOW PROCESSLIST or
SHOW FULL PROCESSLIST for more detail.

I_List<NAMED_LIST>
key_caches

sql/mysqld.cc New in version 4.1, which supports multiple key caches
for MyISAM tables. A list of MyISAM key caches that exist
in the server.

struct system_variables
global_system_variables

sql/mysqld.cc New in version 4.0. A descriptor of the collection of server
configuration variables that can be modified by a client.

struct system_variables
max_system_variables

sql/mysqld.cc New in version 4.0. Contains the limits on the values of
the server configuration variables that can be modified by
a client.

HASH open_cache sql/sql_base.cc The table cache. When a table is opened, the descriptor is
placed into the table cache. Subsequent requests to open
the same table will be satisfied from the cache. The con-
tents of the cache can be viewed with SHOW OPEN
TABLES.

uint protocol_version sql/mysqld.cc Stores the version of the network communication protocol.

uint mysqld_port sql/mysqld.cc The TCP/IP port number that the server listens on for
requests.

struct my_option my_long_
options[]

sql/mysqld.cc The descriptor of all the configuration options understood
by the server.

Table 3-7. Commonly used global variables (continued)

Variable definition Defined in Description

62

Chapter 4CHAPTER 4

Client/Server Communication 4

In this chapter we will discuss the details of the client/server communication in
MySQL. The goal is to give you the ability to look at a binary dump of the client/
server communication and be able to understand what happened. This chapter can
also be helpful if you are trying to write a MySQL proxy server, a security applica-
tion to audit MySQL traffic on your network, or some other program that for some
reason needs to understand the low-level details of the MySQL client/server protocol.

Protocol Overview
The server listens for connections on a TCP/IP port or a local socket. When a client
connects, a handshake and authentication are performed. If successful, the session
begins. The client sends a command, and the server responds with a data set or a mes-
sage appropriate for the type of command that was sent. When the client is finished, it
sends a special command telling the server it is done, and the session is terminated.

The basic unit of communication is the application-layer packet. Commands consist
of one packet. Responses may include several.

Packet Format
There are two types of packets: compressed and noncompressed. The decision on
which one will be used for the session is made during the handshake stage, and
depends on the capabilities and settings of both the client and the server.

Additionally, regardless of the compression option, the packets are divided into two
categories: commands sent by the client, and responses returned by the server.

Server response packets are divided into four categories: data packets, end-of-data-
stream packets, success report (OK) packets, and error message packets.

All packets share the common 4-byte header, documented in Table 4-1.

Relationship Between MySQL Protocol and OS Layer | 63

A compressed packet will have an additional 3-byte field, low byte first, containing
the length of the compressed packet body part that follows. An uncompressed
packet will have the body immediately after the header.

The compression is done with the use of ZLIB (see http://www.zlib.net). The body of
the compressed packet is exactly what a call to compress() with the uncompressed
body as argument would return. It is, however, possible for the body to be stored
without compression when the compressed body would turn out no smaller than the
uncompressed one, or when compress() fails for some reason—e.g., due to the lack
of available memory. If this happens, the uncompressed length field will contain 0.

It is important to remember, though, that even in that case, the compressed format is
still used, which unfortunately results in the waste of 3 bytes per packet. Therefore, a
session that predominately uses small or poorly compressible packets goes faster if
the compression is turned off.

As you may have noticed, the 3-byte field would limit the body length to 16 MB.
What if you need to send a bigger packet? In version 3.23 and earlier, it is not possi-
ble. Version 4.0 added a compatible improvement to the protocol that overcame this
limitation. If the length of the packet is greater than the value of MAX_PACKET_LENGTH,
which is defined to be 224–1 in sql/net_serv.cc, the packet gets split into smaller pack-
ets with bodies of MAX_PACKET_LENGTH plus the last packet with a body that is shorter
than MAX_PACKET_LENGTH. The last short packet will always be present even if it must
have a zero-length body. It serves as an indicator that there are no more packet parts
left in the stream for this large packet.

Relationship Between MySQL Protocol and OS Layer
If you try to run a network sniffer on the MySQL port, you will notice that some-
times several MySQL protocol packets are contained in one TCP/IP packet, and
sometimes a MySQL packet spans several TCP/IP layer packets, while some fit into
exactly one TCP/IP packet. If you somehow manage to intercept the local socket
traffic, you will observe a similar effect. Some buffer writes will have exactly one
packet, while others may contain several. If the lower-level socket-buffer write opera-
tion has a limit on the maximum number of bytes it can handle in one chunk, you
may also see one MySQL packet being transferred in several buffer writes.

Table 4-1. Common 4-byte header for uncompressed packets

Offset Length Description

0 3 Packet body length stored with the low byte first.

3 1 Packet sequence number. The sequence numbers are reset with each new command.
While the correct packet sequencing is ensured by the underlying transmission protocol,
this field is used for the sanity checks of the application logic.

http://www.zlib.net/

64 | Chapter 4: Client/Server Communication

To understand the mechanics of this phenomenon, let’s examine the API the server
or the client uses to send packets. Packets are put in the network buffer with a call to
my_net_write(), defined in sql/net_serv.cc. When the buffer has reached capacity, its
contents will be flushed, which results in an operating system write() call on the
socket—or possibly a sequence of them if the contents of the buffer cannot be writ-
ten into the socket in one operation. On the operating system level this may result in
sending one or more packets, depending on how much it takes to accommodate the
data volume under the operating system protocol constraints.

In some cases, the data in the network buffer needs to be sent to the client immedi-
ately. In that case, net_flush(), defined in sql/net_serv.cc, is called.

Authenticating Handshake
The session between a client and a server begins with an authenticating handshake.
Before it can begin, the server checks whether the host that the client is connecting
from is even allowed to connect to this server. If it is not, an error message packet is
sent to the client notifying it that the host is not allowed to connect.

In the case of successful host verification, the server sends a greeting packet with the
standard 4-byte header, the packet sequence number set to 0, and the body in the
format shown in Table 4-2.

Table 4-2. Fields of the server’s greeting packet

Offset in the body Length Description

0 1 Protocol version number. Decimal 10 (0x0A) in recent versions.
Although some changes were made in the protocol in versions 4.0 and
4.1, the protocol version number remained the same because the
changes were fully backward-compatible.

1 ver_len = strlen
(server_version) + 1

Zero-terminated server version string. The length is variable, and is
calculated according to the formula in the Length column. The subse-
quent offsets are a function of the length of this field.

ver_len + 1 4 Internal MySQL ID of the thread that is handling this connection. Low
byte first.

ver_len + 5 9 In version 4.0 and earlier, the random seed string in its entirety. In 4.1
and later, the first 8 bytes of the 20-byte random seed string. At the
end is a terminating zero. Starting in version 4.1, the length of this
field is controlled by the value of SCRAMBLE_LENGTH_323, defined
in include/mysql_com.h. In the earlier versions, the macro is
SCRAMBLE_LENGTH, defined in sql/sql_parse.cc. With the terminat-
ing zero byte, the length of the string is one greater than the value of
the macro.

ver_len + 14 2 Server capabilities bit mask with the low byte first. See Table 4-5 later
for the meaning of different bits.

Authenticating Handshake | 65

The client responds with a credentials packet. The format differs between versions
up to and including 4.0, and versions 4.1 and later. Table 4-3 shows the format for
the pre-4.1 era. Table 4-4 shows the format for versions 4.1 and later, if the client
understands and is willing to use the 4.1 protocol.

ver_len + 16 1 Default character set code, or more precisely, the code of the default
collation. A character set collation is a set of rules that defines a
sequential order among characters. A list of available collations and
their codes can be obtained by executing SHOW COLLATION LIKE
'%' in version 4.1.

ver_len + 17 2 The server status bit mask with the low byte first. Reports whether the
server is in transaction or autocommit mode, if there are additional
results from a multistatement query, or if a good index (or some
index) was used for query optimization. For details, see the SERVER_
* values in include/mysql_com.h.

ver_len + 19 13 Reserved for future use. Currently zeroed out.

ver_len + 32 13 Present only in version 4.1 and later. The rest of the random seed string
terminated with a zero byte. The length is equal to the value of
SCRAMBLE_LENGTH – SCRAMBLE_LENGTH_323 + 1.

Table 4-3. Fields of the client’s credentials packet, up to MySQL version 4.0

Offset in the body Length Description

0 2 Protocol capabilities bit mask of the client, low byte first.

2 3 Maximum packet length that the client is willing to send or receive.
Zero values means the client imposes no restrictions of its own in
addition to what is already there in the protocol.

5 Varies; see description Credentials string in following format: zero-terminated MySQL username,
then if the password is not empty, scrambled password (8 bytes). This can
be optionally followed by the initial database name, in which case a zero
byte terminator is added immediately after the XOR encrypted password,
followed by the database name string without a terminating zero byte.

Table 4-4. Fields of the client’s credentials packet, MySQL version 4.1 and later

Offset in the body Length Description

0 4 Protocol capabilities bit mask of the client, low-byte first.

4 4 Maximum packet length that the client is willing to send or receive.
Zero values means the client imposes no restrictions of its own in
addition to what is already there in the protocol.

8 1 Default character set (or more precisely, collation) code of the client.

9 23 Reserved space; currently zeroed out.

32 Varies; see description Credentials string in the following format: zero-terminated username,
then the length of the SHA1 encrypted password (decimal 20), fol-
lowed by its value (20 bytes), which is optionally followed by the zero-
terminated initial database name.

Table 4-2. Fields of the server’s greeting packet (continued)

Offset in the body Length Description

66 | Chapter 4: Client/Server Communication

If the SSL capability option is enabled both on the client and on the server, the client
will first send the initial part of the response packet without the credentials string.
When the server receives it, it will see the SSL capability bit enabled in the capabili-
ties mask, and know that it should expect the rest of the communication in SSL. The
client switches to the SSL layer, and resends the entire response packet securely this
time. It would be more efficient, of course, to not resend the initial part of the
response, but, for historical reasons, this small overhead allowed the code on the
server to stay fairly clean without thorough rework.

Once the server receives the credentials packet, it verifies the information. From this
point, it can respond in three different ways:

• If the check succeeds, the standard OK response packet is sent (for details, see
the “Server Responses” section, later in the chapter).

• If the credentials did not meet the expectations of the server, the standard error
message response is sent.

• The third possibility comes from the need to support the transition from 4.0 to
4.1. In some cases, the DBA may have upgraded both the client and the server to
4.1, but forgot or chose not to upgrade the user table in the mysql database,
which contains user names and their respective password hashes. If the entry for
that user has the old-style password hash, it is impossible to authenticate with
the new authentication protocol.

In that event, the server sends a special packet with the 1-byte-long body con-
taining decimal 254, which means: “please send the authentication credentials in
the old format.” The client responds with a packet whose body contains a zero-
terminated encrypted password string. The server responds with either OK or a
standard error message.

At this point the handshake is complete, and the client begins to issue commands.

Authentication Protocol Security
Neither the old nor the new protocol ever sends the user password across the con-
nection in plain text. However, there are a number of weaknesses in the old proto-
col. First, knowing the value of the password hash allows the attacker to perform
authentication without actually knowing the password. This is possible due to a flaw
in the way the expected response to the challenge is computed—it is uniquely deter-
mined by the value of the password hash and the value of the challenge (for details,
see scramble_323() and check_scramble_323() in sql/password.c). Therefore, if the
attacker can get read access to the user table in the mysql database, or obtain the
value of the stored password hash some other way, she will be able to authenticate
with a specially modified version of the MySQL client library.

Second, even without having access to the hash, the correct password can be guessed
in a small number of attempts if the attacker can intercept the authentication traffic

Authenticating Handshake | 67

between the client and the server on a few occasions. This is possible due to the
weakness in the encryption method of the old protocol. The encryption is done using
a home-cooked XOR procedure (see the scramble_323() function mentioned ear-
lier), which lacks true cryptographic strength.

These weaknesses have been addressed in version 4.1. The authentication method
now uses SHA1 hashes for encryption, which are much more resistant to cracking.
Also, the changed challenge-verification algorithm removed the ability to authenti-
cate by knowing just the value of the password hash rather than the actual password.

Despite the added improvements, do not feel complacent about the security of the
new protocol. It is still recommended to block access to the MySQL port on the fire-
wall, and if this is not possible, require the clients to use SSL.

Protocol Capabilities Bit Mask
During the authentication handshake, the client and the server exchange information on
what the other is able or willing to do. This enables them to adjust their expectations of
their peer and not send the data in some unsupported format. The exchange of informa-
tion is accomplished through fields containing the bit mask of protocol capabilities.

The bit mask can be either 4 or 2 bytes long, depending on the context. The newer
(4.1 and later) clients and servers understand 4-byte masks as well as 2-byte ones.
The older (4.0 and earlier) ones can handle only 2-byte masks.

The server, regardless of the version, always announces its capabilities with a 2-byte bit
mask. Although both newer clients and servers understand the 4-byte mask, the first
packet in the dialog must be understood by any client regardless of the version. For this
reason, even the newer clients expect the greeting packet to contain a 2-byte mask.

Once the client knows that it is talking to a newer server, it can announce its capabil-
ities with a 4-byte mask. However, if the newer client detects that it is talking to an
older server, it will announce the capabilities with only a 2-byte mask. Naturally, the
older clients can only send a 2-byte mask; they are not aware of 4-byte ones.

Table 4-5 explains the meaning of the bits used in the capabilities’ bit mask. The val-
ues are defined in include/mysql_com.h.

Table 4-5. Protocol capability bits

Bit macro symbol Hex value Description

CLIENT_LONG_PASSWORD 0x0001 Apparently was used in the early development of 4.1 to indi-
cate that the server is able to use the new password format.

CLIENT_FOUND_ROWS 0x0002 Normally, in reporting the results of an UPDATE query, the
server returns the number of records that were actually mod-
ified. If this flag is set, the server is being asked to report the
number of records that were matched by the WHERE clause.
Not all of those will necessarily be updated, as some may
already contain the desired values.

68 | Chapter 4: Client/Server Communication

CLIENT_LONG_FLAG 0x0004 This flag will be set for all modern clients. Some old clients
expect to receive only 1 byte of flags in the field definition
record, while the newer ones expect 2 bytes. If this flag is
cleared, the client is old and wants only 1 byte for field flags.
This flag will also be set by the modern server to indicate that
it is capable of sending the field definition in the new format
with 2 bytes for field flags. Old servers (pre-3.23) will not
report having this capability.

CLIENT_CONNECT_WITH_DB 0x0008 This flag is also set for all modern clients and servers. It indi-
cates that the initial default database can be specified during
authentication.

CLIENT_NO_SCHEMA 0x0010 If set, the client is asking the server to consider the syntax
db_name.table_name.col_name an error. This syntax
is normally accepted.

CLIENT_COMPRESS 0x0020 When set, indicates that the client or the server is capable of
using the compressed protocol.

CLIENT_ODBC 0x0040 Apparently was created to indicate that the client is an ODBC
client. At this point, it does not appear to be used.

CLIENT_LOCAL_FILES 0x0080 When set, indicates that the client is capable of uploading
local files with LOAD DATA LOCAL INFILE.

CLIENT_IGNORE_SPACE 0x0100 When set, communicates to the server that the parser should
ignore the space characters between identifiers and subse-
quent ‘.’ or ‘(’ characters. This flag enables syntax such as:

 db_name .table_name

or

 length (str)

which would normally be illegal.

CLIENT_PROTOCOL_41 0x0200 When set, indicates that the client or the server is capable of
using the new protocol that was introduced in version 4.1.

CLIENT_INTERACTIVE 0x0400 When set, the client is communicating to the server that it is
accepting commands directly from a human. For the server,
this means that a different inactivity timeout value should be
applied. The server has two settings: wait_timout and
interactive_timeout. The former is for regular clients,
while the latter is for the interactive ones. This distinction
was created to deal with applications using buggy persistent
connection pools that would lose track of established connec-
tions without closing them first, keep creating new ones, and
eventually overflow the server max_connections limit.
The workaround was to set wait_timeout to a low value
that would disconnect the lost connections sooner. This,
unfortunately, had a side effect of disconnecting interactive
clients too soon, which was solved by giving them a separate
timeout.

Table 4-5. Protocol capability bits (continued)

Bit macro symbol Hex value Description

Command Packet | 69

Command Packet
Once the authentication is complete, the client begins sending commands to the
server using command packets. The body of a command packet is documented in
Table 4-6.

CLIENT_SSL 0x0800 When set, indicates the capability of the client or the server
to use SSL.

CLIENT_IGNORE_SIGPIPE 0x1000 Used internally in the client code in versions 3.23 and 4.0.
SIGPIPE is a Unix signal sent to a process when the socket
or the pipe it is writing to has already been closed by the
peer. However, a thread in a threaded application on some
platforms may get a SIGPIPE signal spuriously under some
circumstances. Versions 3.23 and 4.0 permit the client pro-
grammer to choose whether SIGPIPE should be ignored.
Version 4.1 just blocks it during the client initialization and
does not worry about the issue from that point on.

CLIENT_TRANSACTIONS 0x2000 When set in the packet coming from the server, indicates
that the server supports transactions and is capable of report-
ing transaction status. When present in the client packet,
indicates that the client is aware of servers that support
transactions.

CLIENT_RESERVED 0x4000 Not used.

CLIENT_SECURE_CONNECTION 0x8000 When set, indicates that the client or the server can authenti-
cate using the new SHA1 method introduced in 4.1.

CLIENT_MULTI_STATEMENTS 0x10000 When set, indicates that the client can send more than one
statement in one query, for example:

res = mysql_query(con,"SELECT a FROM
t1 WHERE id =1; SELECT b FROM t1
WHERE id=3");

CLIENT_MULTI_RESULTS 0x20000 When set, indicates that the client can receive results from
multiple queries in the same statement.

CLIENT_REMEMBER_OPTIONS 0x80000000 Internal flag used inside the client routines. Never sent to the
server.

Table 4-6. Format of client command packet

Offset in the body Length Description

0 1 Command code.

1 For the noncompressed packet, total packet
length from the header – 1. For the compressed
packet, the compressed body length – 1.

The argument of the command,
if present.

Table 4-5. Protocol capability bits (continued)

Bit macro symbol Hex value Description

70 | Chapter 4: Client/Server Communication

The command codes are contained in enum server_command, defined in include/mysql_
com.h. The command-handling logic can be found in the switch statement of
dispatch_command() in sql/sql_parse.cc.

Table 4-7 documents different types of commands with their codes and arguments.

Table 4-7. Client commands

Command code
enum value Code numeric value Argument description Command description

COM_SLEEP 0 No argument. Never sent by a client. Reserved
for internal use.

COM_QUIT 1 No argument. Tells the server to end the ses-
sion. Issued by the client API
call mysql_close().

COM_INIT_DB 2 A string containing the name of the
database.

Tells the server to change the
default database for the session
to the one specified by the
argument. Issued by the client
API call mysql_select_
db().

COM_QUERY 3 A string containing the query. Tells the server to run the
query. Issued by the client API
call mysql_query().

COM_FIELD_LIST 4 A string containing the name of the
table.

Tells the server to return a list
of fields for the specified table.
This is an obsolete command
still supported on the server for
compatibility with old clients.
Newer clients use the SHOW
FIELDS query.

COM_CREATE_DB 5 A string containing the name of the
database.

Tells the server to create a data-
base with the specified name.
This is an obsolete command
still supported on the server for
compatibility with old clients.
Newer clients use the CREATE
DATABASE query.

COM_DROP_DB 6 A string containing the name of the
database.

Tells the server to drop the
database with the specified
name. This is an obsolete com-
mand still supported on the
server for compatibility with
old clients. Newer clients use
the DROP DATABASE query.

Command Packet | 71

COM_REFRESH 7 A byte containing the bit mask of
reloading operations.

Tells the server to refresh the
table cache, rotate the logs, re-
read the access control tables,
clear the host name lookup
cache, reset the status variables
to 0, clear the replication master
logs, or reset the replication slave
depending on the options in the
bit mask. Issued by the client API
callmysql_refresh().

COM_SHUTDOWN 8 No argument. Tells the server to shut down.
Issued by the client API call
mysql_shutdown().

COM_STATISTICS 9 No argument. Tells the server to send back a
string containing a brief status
report. Issued by the client API
call mysql_stat().

COM_PROCESS_
INFO

10 No argument. Tells the server to send back a
report on the status of all run-
ning threads. This is an obsolete
command still supported on the
server for compatibility with old
clients. Newer clients use the
SHOWPROCESSLIST query.

COM_CONNECT 11 No argument. Never sent by a client. Used for
internal purposes.

COM_PROCESS_
KILL

12 A 4-byte integer with the low byte
first containing the MySQL ID of the
thread to be terminated.

Tells the server to terminate the
thread identified by the argu-
ment. Issued by the client API call
mysql_kill(). This is an
obsolete command still sup-
ported on the server for compati-
bility with old clients. Newer
clients use theKILL query.

COM_DEBUG 13 No argument. Tells the server to dump some
debugging information into its
error log. Issued by the client
API call mysql_dump_
debug_info().

COM_PING 14 No argument. Tells the server to respond with
an OK packet. If the server is
alive and reachable, it will.
Issued by the client API call
mysql_ping().

Table 4-7. Client commands (continued)

Command code
enum value Code numeric value Argument description Command description

72 | Chapter 4: Client/Server Communication

COM_TIME 15 No argument. Never sent by a client. Used for
internal purposes.

COM_DELAYED_
INSERT

16 No argument. Never sent by a client. Used for
internal purposes.

COM_CHANGE_USER 17 A byte sequence in the following for-
mat: zero-terminated user name,
encrypted password, zero-terminated
default database name.

Tells the server the client wants
to change the user associated
with this session. Issued by the
client API call mysql_
change_user().

COM_BINLOG_DUMP 18 A byte sequence in the following for-
mat: 4-byte integer for the offset, 2-
byte integer for the flags, 4-byte inte-
ger for the slave server ID, and a string
for the log name. All integers are for-
matted with the low byte first.

Tells the server to send a con-
tinuous feed of the replication
master log events starting at
the specified offset in the speci-
fied log. Used by the replication
slave, and in the mysqlbinlog
command-line utility.

COM_TABLE_DUMP 19 A byte sequence in the following for-
mat: 1 byte for database name length,
database name, 1 byte for table name
length, table name.

Tells the server to send the table
definition and data to the client
in raw format. Used when a rep-
lication slave receives a LOAD
DATAFROMMASTER query.

COM_CONNECT_OUT 20 No argument. Never sent by a client. Used for
internal purposes.

COM_REGISTER_
SLAVE

21 A byte sequence in the following for-
mat: a 4-byte integer for the server ID,
then a sequence of 1 byte-length pre-
fixed strings in the following order:
slave host name, slave user to connect
as, slave user password. Then a 2-byte
slave user port, 4-byte replication
recovery rank, and another 4-byte
field that is currently unused. All inte-
gers have the low byte first.

Tells the replication master
server to register the slave
using the information supplied
in the argument. This com-
mand is a remnant of the
started fail-safe replication
project. It was introduced in the
early version 4.0, but not much
has changed since. It is possible
that this command might get
removed in the future versions.

COM_PREPARE 22 A string containing the statement. Tells the server to prepare the
statement specified by the argu-
ment. Issued by the client API call
mysql_stmt_prepare().
New in version 4.1.

COM_EXECUTE 23 A byte sequence in the following for-
mat: 4-byte statement ID, 1 byte for
flags, and 4-byte iteration count. All
integers have the low byte first.

Tells the server to execute the
statement referenced by the
statement ID. Issued by the cli-
ent API call mysql_stmt_
execute(). New in version
4.1.

Table 4-7. Client commands (continued)

Command code
enum value Code numeric value Argument description Command description

Command Packet | 73

When MySQL developers add a new command, to keep the backward compatibility
for the older clients, all new commands are added immediately before COM_END in the
enum server_command. Adding it anywhere else would alter the numeric codes of the
commands and thus break all of the commands after the point of the insertion in
older clients. This requirement allows us to easily track the history of features to a
certain extent. For example, we can tell that prepared statements were added after
replication because COM_PREPARE follows COM_BINLOG_DUMP.

COM_LONG_DATA 24 A byte sequence in the following for-
mat: 4 byte statement ID, 2 byte
parameter number, parameter string.
Both integers have the low byte first.

Tells the server the packet con-
tains the data for one bound
parameter in a prepared state-
ment. Used to avoid unneces-
sary copying of a large amount
of data when the value of the
bound parameter is very long.
Issued by the client API call
mysql_stmt_send_long_
data(). New in version 4.1.

COM_CLOSE_STMT 25 4-byte statement ID with the low byte
first.

Tells the server to close the pre-
pared statement specified by
the statement ID. Issued by the
client API call mysql_stmt_
close(). New in version 4.1.

COM_RESET_STMT 26 4-byte statement ID with the low byte
first.

Tells the server to discard the
current parameter values in the
prepared statement specified
by the statement ID that may
have been set with COM_
LONG_DATA. Issued by the cli-
ent API call mysql_stmt_
reset(). New in version 4.1.

COM_SET_OPTION 27 2-byte code for the option, low byte
first.

Tells the server to enable or dis-
able the option specified by the
code. At this point, seems to be
used only to enable or disable
the support of multiple state-
ments in one query string.
Issued by the client API call
mysql_set_server_
option(). New in version 4.1.

COM_END 28 No argument. Never sent by a client. Used for
internal purposes.

Table 4-7. Client commands (continued)

Command code
enum value Code numeric value Argument description Command description

74 | Chapter 4: Client/Server Communication

Server Responses
Once the server receives a command, it processes it and sends one or more response
packets. Several types of responses are discussed in this section.

Data Field
Data fields are critical components in many of the server response packets. A data
field consists of a length specifier sequence followed by the actual data value. The
length specifier sequence can be understood by studying the definition of net_store_
length() from sql/pack.c:

char *
net_store_length(char *pkg, ulonglong length)
{
 uchar *packet=(uchar*) pkg;
 if (length < (ulonglong) LL(251))
 {
 *packet=(uchar) length;
 return (char*) packet+1;
 }
 /* 251 is reserved for NULL */
 if (length < (ulonglong) LL(65536))
 {
 *packet++=252;
 int2store(packet,(uint) length);
 return (char*) packet+2;
 }
 if (length < (ulonglong) LL(16777216))
 {
 *packet++=253;
 int3store(packet,(ulong) length);
 return (char*) packet+3;
 }
 *packet++=254;
 int8store(packet,length);
 return (char*) packet+8;
}

As you can see, if the value of length does not exceed 251 (i.e., if it can fit into 1 byte
without a conflict with the reserved values), the code just stores it in a byte. If it is 251
and higher but fits into 2 bytes, the code prefixes it with the value of 252 and then
writes it out in the following 2 bytes. If 2 bytes is not enough, but 4 would do, the
code uses 253 for the code, and then occupies the next 4 bytes with the length value. If
4 bytes is not enough, the code uses 254 for the code, and stores it in 8 bytes. It must
be noted that all length values following the code are stored with the low byte first.

One may ask why the 1 byte length is limited to 251, when the first reserved value in the
net_store_length() is 252. The code 251 has a special meaning. It indicates that there is
no length value or data following the code, and the value of the field is the SQL NULL.

Server Responses | 75

Why such a complexity? Most of the time the data field is fairly short, and, espe-
cially if a query returns a lot of records and/or selects a lot of columns, there could be
many of them in the response. Wasting even a byte per field in this situation would
add up to a large overhead. The probability of a field length being greater than 250 is
relatively low, but even in that case, wasting a byte is barely noticeable since the
server is already sending at least 253 bytes: at least 2 for the length, and at least 251
for the field value.

Immediately after the length sequences is the actual data value, which is converted to
a string representation.

In the pre-4.1 versions, the standard server API call for storing a data field in a buffer
is net_store_data(), which exists in several variants, one for each possible data argu-
ment type. The net_store_data() family is found in sql/net_pkg.cc in those older ver-
sion. Versions 4.1 and higher use Protocol::store(), which in the case of the simple
protocol, just wraps around net_store_data(). Both are implemented in sql/protocol.cc.

Note that in version 4.1, when returning the data for prepared statements fields and
when the data value is not a string, the data is sent in the raw binary format with the
low byte first without a length specifier.

OK Packet
An OK packet is sent to indicate that the server successfully completed the command.
It is sent in response to the following commands:

• COM_PING

• COM_QUERY if the query does not need to return a result set; for example, INSERT,
UPDATE, or ALTER TABLE

• COM_REFRESH

• COM_REGISTER_SLAVE

This type of packet is appropriate for commands that do not return a result set. Its
format, however, permits sending some extra status information, such as the num-
ber of modified records, the value of the automatically generated primary key, or a
custom status message in a string format. The structure of the packet body is docu-
mented in Table 4-8.

Table 4-8. Format of server’s OK packet

Offset in the body Length Description

0 1 A byte with the value of 0, indicating that the packet has no fields.

1 rows_len The number of records that the query has changed in the field length
format described in the “Data Field” section, earlier in this chapter.
Its length varies depending on the value. I will refer to its length as
rows_len to express the subsequent offsets.

76 | Chapter 4: Client/Server Communication

To send an OK packet from inside the server, you must call send_ok(). In version 4.1
and later, the function is declared in sql/protocol.h, and defined in sql/protocol.cc. In
the earlier versions, it is declared in sql/mysql_priv.h and defined in sql/net_pkg.cc.

Error Packet
When something goes wrong with the processing of a command, the server responds
with an error packet. The format is documented in Table 4-9.

1 + rows_len id_len The value of the generated auto-increment ID for the primary key.
Set to 0 if not applicable in the context. The value is stored in the field
length format of a data field. I will refer to the length of this value as
id_len.

1 + rows_len + id_len 2 Server status bit mask, low byte first. For details on different values,
see the macros starting with STATUS_ in include/mysql_com.h. In
the protocol of version 4.0 and earlier, the status field is present only
if it is a nonzero value. In the protocol of version 4.1 and later, it is
reported unconditionally.

3 + rows_len + id_len 2 Present only in the protocol of version 4.1 and later. Contains the
number of warnings the last command has generated. For example,
if the command was COM_QUERY with LOAD DATA INFILE, and
some of the fields or lines could not be properly imported, a number
of warnings will be generated. The number is stored with the low
byte first.

5 + rows_len + id_len in
version 4.1 and later protocol.,
1 + rows_len + id_len or
3 + rows_len + id_len in
the older protocol, depending on
whether the server status bit
mask was included.

msg_len An optional field for the status message if one is present in the stan-
dard data field format with the field length followed by field value,
which in this case is a character string.

Table 4-9. Format of server’s error packet

Offset in the body Length Description

0 1 A byte containing 255. The client will always treat a response
packet starting with a byte containing 255 as an error message.

1 2 The error code. Low byte first. The field will not be included if the
server is talking to a very ancient pre-3.23 client, and the subse-
quent offsets should be adjusted accordingly in that case.

3 2 Character ‘#’ followed by the byte containing the value of the
ODBC/JDBC SQL state. Present only in version 4.1 and later.

5 in version 4.1 and later, 3 in 4.0
and earlier

Varies Zero-terminated text of the error message.

Table 4-8. Format of server’s OK packet (continued)

Offset in the body Length Description

Server Responses | 77

To send an error packet from inside the server, call send_error(), which is defined in
sql/protocol.cc in version 4.1 and later, and in sql/net_pkg.cc in version 4.0 and earlier.

EOF Packet
The end-of-file (EOF) packet is used to communicate a number of messages:

• End-of-field information data in a result set

• End-of-row data in a result set

• Server acknowledgment of COM_SHUTDOWN

• Server reporting success in response to COM_SET_OPTION and COM_DEBUG

• Request for the old-style credentials during authentication

The body of an EOF packet always starts with a byte containing decimal 254. In the
pre-4.1 era, there was nothing else in the body in addition to this byte. Version 4.1
added another 4 bytes of status fields with the potential of going up to 7 bytes. The
format of the version 4.1 EOF body is outlined in Table 4-10.

The reason for the 7 byte limit in the status bytes area is that the decimal 254 byte
followed by an 8 byte string at the beginning of a packet body can have a different
meaning: it can specify the number of fields in a result set using the field length for-
mat described in the “Data Field” section, earlier in this chapter.

To send an EOF packet, the server uses send_eof(), which is defined in sql/protocol.cc
in 4.1 and later, and in sql/net_pkg.cc in the earlier versions.

Result Set Packets
A large number of queries produce a result set. Some examples are SELECT, SHOW,
CHECK, REPAIR, and EXPLAIN. Any time the expected information from a query is more
than a simple status report, a result set is returned.

The result set consists of a sequence of packets. First, the server sends information
about the fields with a call to Protocol::send_fields() in sql/protocol.cc in version 4.1
and later. In the older versions, the function is called send_fields() and is found in
sql/net_pkg.cc. This stage produces the following sequence of packets:

Table 4-10. Format of server’s EOF packet

Offset in the body Length Description

0 1 Byte with the decimal 254

1 2 Number of warnings

3 2 Server status bit mask

78 | Chapter 4: Client/Server Communication

• A packet with the body consisting of the standard field-length specifier
sequence. However, this time, the meaning of the number is different. It indi-
cates the number of fields in the result set.

• A group of field description packets (see the upcoming explanation for the for-
mat description), one for each field, in the field order of the result set.

• A terminating EOF packet.

The format of the field description packet body is shown in Tables 4-11 and 4-12.
Table 4-11 shows the format for versions 4.0 and earlier, while Table 4-12 shows the
format for versions 4.1 and later. Because most of the packet elements have variable
lengths, the offsets are dependent on the content of the previous fields. I will, there-
fore, omit the offset column in the format descriptions. Finally, Table 4-13 explains
the different field option flags.

Table 4-11. Format of server’s result set sequence, versions 4.0 and earlier

Length Description

Varies Table name of the field in the data field format. If the table was aliased in the query, contains the
name of the alias.

Varies Column name of the field in the data field format. If the column was aliased in the query, contains
the name of the alias.

4 Data field-formatted value of field length, low byte first.

2 Data field-formatted field-type code according to enum field_types in include/mysql_com.h.

1 Decimal value 3, meaning the next 3 bytes contain data. The idea is to make the sequence look like a
standard data field.

2 Bit mask of field option flags (low byte first). See Table 4-12 for the explanation of the bits.

1 Decimal point precision of the field.

Varies Optional element. If present, contains the default value of the field in the standard field data format.

Table 4-12. Format of server’s result set sequence, versions 4.1 and later

Length Description

4 Data field (see the section “Data Field,” earlier in this chapter) containing the ASCII string def.

Varies Database name of the field in the data field format.

Varies Table name of the field in the data field format. If the table was aliased in the query, contains the
name of the alias.

Varies Table name of the field in the data field format. If the table was aliased in the query, contains the
original name of the table.

Varies Column name of the field in the data field format. If the column was aliased in the query, contains
the name of the alias.

Varies Column name of the field in the data field format. If the column was aliased in the query, contains
the original name of the table.

1 Byte containing decimal 12, meaning that 12 bytes of data follow. The idea is to make the sequence
look like a standard data field.

Server Responses | 79

Following the field definition sequence of packets, the server sends the actual rows of
data, one packet per row. Each row data packet consists of a sequence of values
stored in the standard field data format. When reporting the result of a regular query
(sent with COM_QUERY), the field data is converted to the string format. When using a
prepared statement (COM_PREPARE), the field data is sent in its native format with the
low byte first.

After all of the data rows have been sent, the packet sequence is terminated with an
EOF packet.

2 Character set code of the field (low byte first).

4 Field length (low byte first).

1 Type code of the field according to enum field_types in include/mysql_com.h.

2 Bit mask of field option flags (low byte first). See Table 4-13 for the explanation of the bits.

1 Decimal-point precision of field values.

2 Reserved.

Varies Optional element. If present, contains the default value of the field in the standard field data format.

Table 4-13. Option flags in server’s result set packets

Bit macro Hexadecimal bit value Description

NOT_NULL_FLAG 0x0001 The field value cannot be NULL (it is declared with the NOT NULL
attribute).

PRI_KEY_FLAG 0x0002 The field is a part of the primary key.

UNIQUE_KEY_FLAG 0x0004 The field is a part of a unique key.

MULTIPLE_KEY_
FLAG

0x0008 The field is a part of some non-unique key.

BLOB_FLAG 0x0010 The field is a BLOB or TEXT.

UNSIGNED_FLAG 0x0020 The field was declared with the UNSIGNED attribute, which has the
same meaning as the unsigned keyword in C.

ZEROFILL_FLAG 0x0040 The field has been declared with the ZEROFILL attribute, which tells
the server to pad the numeric types with leading zeros in the output
to fit the specified field length.

BINARY_FLAG 0x0080 The field has been declared with the BINARY attribute, which tells the
server to compare strings byte-for-byte in a case-sensitive manner.

ENUM_FLAG 0x0100 The field is an ENUM.

AUTO_INCREMENT_
FLAG

0x0200 The field has been declared with the AUTO_INCREMENT attribute,
which enables the automatic generation of primary key values when a
new record is inserted.

TIMESTAMP_FLAG 0x0400 The field is a timestamp.

SET_FLAG 0x0800 The field is a SET.

NUM_FLAG 0x8000 Used with cursors in version 4.1 to indicate that the field is numeric.

Table 4-12. Format of server’s result set sequence, versions 4.1 and later (continued)

Length Description

80

Chapter 5CHAPTER 5

Configuration Variables 5

Much can be learned about the internal workings of MySQL server by studying its
configuration variables. In some cases, the very existence of a variable with a certain
name tells a story. For example, key_buffer_size reveals that MySQL uses a key
cache. query_cache_size suggests that the server can cache the results of a query to
avoid unnecessary work when it is run repeatedly without any modifications to the
tables that it references. innodb_flush_log_at_trx_commit suggests that the InnoDB
storage engine supports transactions, and may optionally not write out its transaction
log to disk on every commit. slave_compressed_protocol reveals that MySQL sup-
ports replication with a slave that can request that the data transfer be compressed.

Other option names are perhaps not as self-explanatory, but you will learn a lot by
asking yourself why that option exists, and studying the source to find out how the
different settings affect the behavior.

MySQL has over 200 different options. Every one of them tells a story. Some reveal
the presence of a feature. Some show the richness of MySQL optimization algo-
rithms. Some demonstrate MySQL’s ability to self-administer. Some are there
because some platform-specific bug needed to be tracked down or worked around at
some point. Others exist just to allow the user to choose a file or a directory used for
some internal operation, but their very existence permits us to take a peek at what
MySQL is doing behind the scenes. Due to the space constraints, we cannot hear all
of those stories, so we’ll focus on the most interesting ones.

Configuration Variables Tutorial
To compensate for the lack of coverage for many configuration variables in this
chapter, this section contains a brief “nuts-and-bolts” tutorial on how option pars-
ing works. This will enable you to track down unfamiliar options in the source, as
well as add your own.

Configuration Variables Tutorial | 81

Configuration File and Command-Line Options
mysqld can receive configuration variable settings on the command line, or it can read
them from configuration files. There can be multiple configuration files, and their
contents can be merged with the command-line configuration options.

The first file to be examined is /etc/my.cnf. By default, other locations are also
searched after a successful or unsuccessful attempt to load /etc/my.cnf in the given
order: first my.cnf in the directory specified by a compiled-in macro DATADIR, and
then .my.cnf (note the initial period) in the home directory of the real (rather than
effective) user that started mysqld. Note that the loading attempts in this sequence
continue regardless of whether the previous attempt succeeded or failed. Thus, sev-
eral configuration files could be potentially combined.

To find out which configuration files mysqld is loading on Linux, you can run the fol-
lowing shell command:

$ strace -e stat64 mysqld --print-defaults > /dev/null

which will produce an output similar to this:

stat64("/etc/my.cnf", {st_mode=S_IFREG|0644, st_size=2025, ...}) = 0
stat64("/usr/var/my.cnf", 0xbfffdcbc) = -1 ENOENT (No such file or directory)
stat64("/home/sasha/.my.cnf", 0xbfffdcbc) = -1 ENOENT (No such file or directory)
upeek: ptrace(PTRACE_PEEKUSER, ...): Input/output error

The error message from strace about ptrace() on the last line can be safely ignored.
The important parts of the output are the traced calls to stat64(). The first argu-
ment in each of those calls is the name of the configuration file that mysqld is trying
to load. Here the files are /etc/my.cnf, /usr/var/my.cnf, and /home/sasha/.my.cnf, in
that order. You can see that the first file exists, while the other two do not.

Another way to get the same information is to run:

$ mysqld --verbose --help | head -15

which produces something like this:

/reiser-data/oreilly/mysql-5.1.11/sql/mysqld Ver 5.1.11-beta-log for pc-linux-gnu on
i686 (Source distribution)
Copyright (C) 2000 MySQL AB, by Monty and others
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license

Starts the MySQL database server

Usage: /usr/bin/mysqld [OPTIONS]

Default options are read from the following files in the given order:
/etc/my.cnf ~/.my.cnf /usr/var/my.cnf
The following groups are read: mysqld server mysqld-5.1
The following options may be given as the first argument:
--print-defaults Print the program argument list and exit
--no-defaults Don't read default options from any options file

82 | Chapter 5: Configuration Variables

The message, among other things, tells us that it is going to check /etc/my.cnf, ~/.my.cnf,
and /usr/etc/my.cnf in that order.

The loading of the configuration file can be disabled with the command-line argu-
ment --no-defaults. If used, it must be the first argument. Alternative configuration
files can be specified with --defaults-file and --defaults-extra-file. When --defaults-file
is given, the compiled-in configuration files sequence is skipped, and the specified
file is loaded instead. If --defaults-extra-file is given, the specified file is loaded
after the compiled-in configuration files sequence has been loaded. Note that just
like --no-defaults, --defaults-file and --defaults-extra-file must come first in the
argument list, or you will get an error about an unknown option. As a conse-
quence, the two options cannot be used together.

What happens when several conflicting configuration option sources are combined?
A good way to understand what happens and why is to examine what mysqld does
behind the scenes to process the configuration options. One of the first things main()
in sql/mysqld.cc does is call init_common_variables(), also from sql/mysqld.cc, which
in turn calls load_defaults() from mysys/default.c. load_defaults() is responsible
for loading all of the configuration files that are available. You may notice that load_
defaults() receives as arguments &argv, the array of command-line arguments, and
&argc, the number of command-line arguments. It does this so that it can insert the con-
figuration file options into the list and make it look to the command-line argument pro-
cessing code as if those options have been specified on the command line. It is
important to note that the arguments from the configuration files get inserted into the
list before the regular command-line arguments in the order that the files are processed.

The command-line arguments are processed later on with a call to get_options()
from sql/mysqld.cc, which transfers control to handle_options() from mysys/my_
getopt.c. handle_options() in turn begins to process the merged list of arguments in
order starting from the first one. What happens if the same variable in that list is set
more than once? From the logic of the argument processing, we can see that the set-
ting that appears last in the list will be the one that will actually take effect.

There is one exception to the previous rule. For security purposes, the --user option
is not allowed to be reset with a subsequent option value in the processing chain.

Therefore, we can observe that in the case of conflicting settings with some exceptions,
the command-line arguments have the highest precedence. After that, it is .my.cnf in the
home directory of the real user, my.cnf in the compiled-in DATADIR, and last of all /etc/
my.cnf.

Although mysqld provides many options to load the configuration, the recommended
way is to use only /etc/my.cnf and make sure that other configuration files mysqld is
interested in do not exist, as well as that no command-line arguments are given.

Configuration Variables Tutorial | 83

The configuration file follows the format informally defined as follows:

[section_name]
option_name=option_value#comment
option_name=option_value
#comment
option_with_no_argument

There can be several sections, each often used by a program with the same name.
Thus, mysqld looks for the section labeled mysqld. There can be only one option per
line. Comments can be put on their own lines or at the end of an option line, and
start with #. For the numeric option values, K, M, or G suffixes can be used to indicate
kilobytes, megabytes, or gigabytes. The equivalent lowercase suffixes are also
allowed. Single or double quotes are allowed around the arguments. The following
example illustrates these rules:

[mysqld]
key-buffer-size=128M
make sure we log queries that do not use keys
log-long-format
long-query-time='3' # anything longer than this is too long
max-connections=300
socket="/var/lib/mysql/mysql.sock"
datadir=/var/lib/mysql

Historically, the server configuration parameters have been divided into two groups:
options and variables. In version 3.23, numeric variables had to be set with the set-
variable option. For example, the 3.23 equivalent of:

 max-connections=300

would have been:

 set-variable= max_connections=300.

True to its commitment to backward compatibility, later versions of MySQL still
support the 3.23 style syntax for setting variables. However, a rewrite of the configu-
ration parameter processing code in 4.0 has eliminated the distinction.

Internals of the Configuration Option Parsing
The configuration variables are defined by struct my_option my_long_options[] from
sql/mysqld.cc, while struct my_option is defined in include/my_getopt.h. Table 5-1
lists its members in the order they are defined in the structure. Table 5-2 lists the
variable type codes used in the var_type member, and Table 5-3 lists the argument
type codes used in the arg_type member.

84 | Chapter 5: Configuration Variables

Table 5-1. Members of struct my_option

Definition Description

const char *name Option name as it appears in the configuration file. On the command line, the option
name is prefixed with a double hyphen: --.

int id A unique integer code for the option. If the code fits within the printable ACSII character
range, it is also used for the short (prefixed by a single hyphen) form of the command-
line option. For example, if the value is the ASCII code for b, this option can be specified
with -b on the command line.

const char *comment A brief documentation of the option that appears in the output of mysqld --help.

gptr *value A pointer to the memory location that will store the value of the option once it is
parsed. The type of the variable pointed at should be specified by the appropriate
value of the var_type member. If the option accepts no arguments, should be set
to 0.

gptr *u_max_value A pointer to the memory location that will store the maximum possible value of the
option. Usually points to a member of a max_system_variables structure,
which results in its initialization.

const char **str_values At this point, does not appear to be used anywhere in the code. Apparently was
intended to point to an array of possible string values for the option. Set it to 0 if you
are adding your own option.

ulong var_type Variable type code. For possible values and their meanings, see Table 5-2. The pre-
processor macros containing the values are defined in include/my_getopt.h.

enum get_opt_arg_type
arg_type

Argument type code. For possible values, see Table 5-3. enum get_opt_arg_
type is defined in include/my_getopt.h.

longlong def_value Default value.

longlong min_value Minimum value. If a lower value is specified, the actual value of the option is set to
the minimum value.

longlong max_value Maximum value. If a higher value is specified, the actual value of the option is set to
the maximum value.

longlong sub_size The value to subtract from the option before storing it in the variable associated with
the option.

long block_size The option value will be adjusted to be a multiple of this parameter.

int app_type Apparently reserved for future use. Safe to set to 0.

Table 5-2. Variable type codes allowed in the var_type field

Macro Decimal value Description

GET_NO_ARG 1 There is no variable to worry about because the option accepts no argument.

GET_BOOL 2 The variable is of type my_bool.

GET_INT 3 The variable is of type int.

GET_UINT 4 The variable is of type uint.

GET_LONG 5 The variable is of type long.

GET_ULONG 6 The variable is of type ulong.

GET_LL 7 The variable is of type longlong.

Configuration Variables Tutorial | 85

Each member of my_long_options corresponds to a configuration option. The option
parsing happens in get_option() in sql/mysqld.cc, which is just a wrapper around
handle_options() from mysys/my_getopt.c. If processing an option is as simple as
just initializing a variable, it is sufficient to provide an appropriate address and a vari-
able type in the definition of the corresponding member of the my_long_options
array. In some cases, a more complex initialization is required. In these cases the get_
one_option() callback from sql/mysqld.cc is used. This function is called for each
option by handle_options() after the value of the option has been initialized.

GET_ULL 8 The variable is of type ulonglong.

GET_STR 9 The variable is of type char*. When the corresponding option is parsed, the variable
will be pointed to the location containing the option value. In other words, it points
to somewhere in the middle of one of the members of the argv array. No memory is
allocated.

GET_STR_
ALLOC

10 The variable is of type char*. If the initial value is not 0, the option parsing code
assumes that the pointer has been allocated earlier with my_malloc() and will
free it with a call to my_free(). Otherwise the pointer is allocated with my_
malloc(). Thus, the value of the option can end up either in a predefined location
allocated by the caller, or in a location allocated by the options parser .

GET_DISABLED 11 The option is understood by the option parser but is disabled. If used, the parsing is
aborted and an error code is returned.

GET_ASK_ADDR 128 This value is ORed with other values. If enabled, the address for the variable will be
provided by a special function mysql_getopt_value() from sql/mysqld.cc. This
is useful for option arguments in the style of namespace.arg_name; e.g.,
keycache1.key_buffer_size. The mysql_getopt_value() method
receives the value of the namespace part as an argument, and is able to supply the
correct storage address based on this information. Currently, this syntax is used to
support configuration of multiple key caches in MyISAM tables, but could be used for
other things in the future.

Table 5-3. Argument type codes allowed in the arg_type field

Value Description

NO_ARG The option does not accept an argument. It is an error to provide one. This type is usu-
ally used for Boolean flags.

OPT_ARG The option may accept an argument, but it is not an error to not provide one. In that
case the value of the variable will be set to its default value. This type is usually used
for options that tell MySQL to log something, and may optionally specify the location
of the log, or for options that enable a feature that has several different modes of
operations, with one being a very reasonable default, and others being somewhat
obscure.

REQUIRED_ARG The option requires the user to provide an argument. If no argument is supplied, an
error is reported. This type is usually used for numeric variables, or for other options
where it does not make sense to just name the option and expect the server to supply
a reasonable default.

Table 5-2. Variable type codes allowed in the var_type field (continued)

Macro Decimal value Description

86 | Chapter 5: Configuration Variables

Example of Adding a New Configuration Option
Let us consider an example of adding a simple new configuration option. On occa-
sion, when trying to start mysqld, a problem may arise. A stale instance of mysqld
might be running and using the resources that the new instance will try to acquire.
This is going to cause an error. We will add an option, kill-old-mysqld, that kills an
old instance of mysqld if such is present. The code shown in this section is available
from this book’s web site, as listed in the preface.

For this example, I assume that you have gone through the steps in Chapter 2, and
have a source tree where you have previously had a successful build.

First, we open sql/mysqld.cc in a text editor. Then we find the initialization of my_
long_options and add the following entry somewhere in the array (it is a good idea to
put it in alphabetical order by option names, but anywhere else would work):

{"kill-old-mysqld", OPT_KILL_OLD_MYSQLD,
"Kill old instance of mysqld on startup",
(gptr*) &opt_kill_old_mysqld, (gptr*) &opt_kill_old_mysqld, 0,GET_BOOL, NO_ARG,
0, 0, 0, 0, 0, 0},

Note that we are now referencing a nonexistent value OPT_KILL_OLD_MYSQLD and a
variable opt_kill_old_mysqld, which also does not exist. Let’s quickly fix these
issues. Find enum options_mysqld in the same file, and add OPT_KILL_OLD_MYSQLD to it
(conventionally, new options are frequently added at the end, but anywhere else
would work). Then we add a global variable with the following definition:

my_bool opt_kill_old_mysqld = 0;

The location of it is not relevant in terms of code functionality, but it is a good idea
to follow established conventions. You can search for my_bool opt_skip_slave_start
and place it in that general area.

Now the option is recognized by the parser, and the variable gets initialized. Our
next step is to actually do something when that option is present. In main(), after the
call to init_common_variables(), place the following piece of code:

if (opt_kill_old_mysqld)
 kill_old_mysqld();

Now we need to declare and define kill_old_myslqd(). First, place the following
declaration somewhere at the top of the file (a good place would be right after the
static void mysql_init_variables(void) line):

static void kill_old_mysqld(void);

Then put the following definition somewhere in the file (may just as well be after the
part where mysql_init_variables() is defined):

static void kill_old_mysqld(void)
{
 File fd = -1;

Configuration Variables Tutorial | 87

 /* pid value can have no more than 20 digits,
 and we need one extra byte for the new line character
 */

 char buf[21];
 char* p;
 long pid;

 /* return if we cannot open the file */
 if ((fd= my_open(pidfile_name,O_RDONLY,MYF(0))) < 0)
 return;

 /* Populate the buffer. For the sake of simplicity
 we do not deal
 with the case of a partial read, and leave it
 as an exercise for
 the meticulous reader.
 */
 if (my_read(fd, buf, sizeof(buf), MYF(0)) <= 0)
 goto err;

 /* boundary for strchr() */
 buf[sizeof(buf) - 1]= 0;

 /* find the end of line and put a \0 terminator instead */
 if (!(p= strchr(buf,'\n')))
 goto err;
 *p= 0;

 if (!(pid= strtol(buf,0,10)))
 goto err;

 /* Support for Windows is left as an exercise for
 the reader */
#ifndef __WIN_ _
 /* A crude kill method with no checks.
 A more refined method is left
 as an exercise for the reader.
 */
 kill(pid, SIGTERM);
 sleep(5);
 kill(pid, SIGKILL);
 sleep(2);
#endif

 /* Cleanup. Should be executed in all cases,
 success or error
 */
err:
 if (fd >= 0)
 my_close(fd,MYF(0));
}

88 | Chapter 5: Configuration Variables

Because we have modified only sql/mysqld.cc, it is sufficient to run make only in the
sql directory. If you made the modifications with no typos, it will produce a new
mysqld binary with the support for the new option.

You may have noticed from the comments in the source that, to keep this example
simple, I have left a lot of dirty work as an exercise for the reader. Hopefully, this
will help you appreciate the challenges of the MySQL development team. Due to
its requirements for portability and robustness, even simple additions to the code
base involve a lot of error checking and handling, and a lot of portability
workarounds. There is a long road from “it works for me” to “it is ready for pro-
duction release.”

Interesting Aspects of Specific Configuration Variables
Now that you understand the general handling of configuration variables, this sec-
tion presents the stories of particular variables that affect mysqld significantly.

big-tables
The MySQL optimizer tries as hard as it can to avoid using a temporary table when
resolving a query. However, in some cases this grim task just has to be done. Then,
if at all possible, it will try to use an in-memory temporary table. Unfortunately, the
size of the table cannot always be estimated in advance. Sometimes in the process of
populating the table, the maximum in-memory table size limit is reached (the limit
is controlled by the tmp_table_size setting). When this happens, the temporary
table needs to be converted to a disk type (i.e., MyISAM). This means re-creating
the table and repopulating it with the rows collected in the in-memory table up to
this point.

For a typical MySQL usage, the need to convert an in-memory table to disk is a rare
occurrence. However, there are applications that run into this situation a lot. If you
know in advance that the temporary result is going to be more than can be stored in
memory, the big-tables option comes in handy. It tells the server to not even bother
creating an in-memory table, and to start with a disk-based table right away.

When enabled, big-tables can still be overridden with the SQL_SMALL_RESULT query
option for one particular query. Alternatively, when big-tables is disabled, SQL_
BIG_RESULT option can be used to force the optimizer to start out with a disk-based
table.

For further study of this option, look for create_tmp_table() in sql/sql_select.cc. Just
like many others in this file, this is a very large function. Once you have found the
start of the definition, you will probably need to use the search function of your edi-
tor again. This time look for OPTION_BIG_TABLES.

Interesting Aspects of Specific Configuration Variables | 89

concurrent-insert
A frequent complaint about MyISAM tables, especially back in the early days of 3.23,
was that the use of table locks (as opposed to only row or page locks) caused serious
performance degradation due to unnecessarily high lock contention. This issue gained
a good amount of publicity in the open source community when the popular develop-
ment site SourceForge (http://sourceforge.net) discovered with its own benchmark that
MySQL did not scale very well with its application, and migrated to PostgreSQL. Sev-
eral other users observed similar results. The degradation in performance under high
load was believed to be caused by the lock contention.

Indeed, there was good reason to believe so. While read locks are shared, the write lock
is exclusive. If one thread is updating just one record, every other thread that wants to
read or write to some other record must enter the queue to wait for the lock. This means
you have to suspend it, and there is a context switch. If this happens enough, pretty
soon all your CPU is doing is switching between threads instead of doing the work.

The assumption turned out to be incorrect, at least to a large extent. The problem was
attributed to the inability of LinuxThreads to deal efficiently with frequently acquired
and released mutexes, something MySQL server had to do a lot of. After a patch was
applied to LinuxThreads, the benchmarks that performed a heavy mix of reads and
writes scaled just fine as long as both types of queries were properly optimized.

In the meantime, however, a partial workaround was added. While the general case for
a minimal conflict type of lock would have been fairly difficult, in one special case the
lock contention could be minimized with only a few changes to the code. When a
record is inserted into the table, the MyISAM storage engine first tries to find a previ-
ously deleted record whose space is large enough for the new record, and overwrites
that space with the new record. However, if there are no records marked as deleted, the
record is written at the end of the datafile. In the latter case, it turned out not to be so
difficult to allow the INSERT and the SELECT operations to proceed concurrently.

When this option is enabled, the MyISAM storage engine attempts to use this opti-
mization whenever possible.

To learn more about the concurrent insert, study these files in the myisam directory:

mi_open.c
mi_extra.c
mi_write.c
mi_range.c
mi_rkey.c
mi_rnext.c
mi_rnext_same.c
mi_rprev.c
mi_rsame.c

and search for concurrent_insert.

http://sourceforge.net/

90 | Chapter 5: Configuration Variables

core-file
Debugging a threaded program can be quite a bit of a challenge. It is even more chal-
lenging when a crash happens, but no core file is produced. Sometimes you need that
core file badly, as the crash cannot be duplicated in a debugger. And some platforms
are not particularly anxious to generate a core file when threads are used.

In the unfortunate event of a crash, this option will engage the full power of the voo-
doo black magic known as MySQL in order to coax the uncooperative kernel to
write out a core file. The magic is implemented in write_core() in sql/stacktrace.c.

default-storage-engine
In the past, this option was known as default-table-type, which is still supported.
As MySQL AB made the transition from being a small company just trying to make a
good database to a bigger entity trying to make an impression in the corporate
world, it was discovered that IT managers respond to the term “storage engine”
much better than “table type,” which is perhaps a more intuitive term for a MySQL
hacker.

Due to its development history and Monty’s insight, MySQL ended up with a very
powerful architecture that abstracts the storage engine from the parser and opti-
mizer enough to allow multiple storage engines.

One type of storage engine, MEMORY, stores tables only in memory. MyISAM pro-
vides persistent storage and a number of fancy features such as full-text search and
spatial indexing, but does not have transactions or row-level locks. InnoDB provides
transactions and row-level locks, but it is slower on some operations than MyISAM
and requires more disk space. Depending on the need of your application, you can
pick the right type of storage engine on a per-table basis.

The storage engine can be specified when creating a table. If omitted, the one speci-
fied by default-storage-engine is used. It can also be changed for existing tables
with the ALTER TABLE command. The default value of default-storage-engine is
MyISAM.

To study the storage engines, take a look at:

sql/handler.h
sql/handler.cc
sql/ha_myisam.h
sql/ha_myisam.cc
sql/ha_innodb.h
sql/ha_innodb.cc
sql/ha_heap.h
sql/ha_heap.cc
Other files matching the patterns sql/ha_*.cc and sql/ha_*.h

Interesting Aspects of Specific Configuration Variables | 91

delay-key-write
This option was added in the early days of 3.23 to optimize the queries that update
keys (INSERT, UPDATE, and DELETE) in MyISAM tables. Normally, the server flushes the
changed key blocks out of the MyISAM key cache at the end of every query. This
could cause severe performance degradation in some cases.

One approach to this performance problem is to delay the key block flushing. When
the key writes are delayed, the changed blocks are not flushed out at the end of a
query. The flushing happens later under one the following circumstances:

• All of the tables are removed from the table cache with FLUSH TABLES.

• The table is removed from the table cache with FLUSH TABLE.

• The table cache is flushed during server shutdown.

• The table is displaced from the table cache with a new table.

• The changed key blocks are displaced from the key cache with new blocks.

If delay-key-write is set to ON, only the tables with the DELAY_KEY_WRITE=1 setting are
handled this way. When the setting is ALL, all of the MyISAM key writes are delayed
regardless of the table options. When set to OFF, delayed key writes do not happen
regardless of the table options.

The advantage of using this option is the performance gain. The disadvantage is a
higher risk of table corruption should a crash happen.

For further study of this option, find the start of mi_lock_database() definition in
myisam/mi_locking.c, and look for the call to flush_key_blocks(). You may also
want to study the flush_key_blocks() itself in mysys/mf_keycache.c.

ft_stopword_file
MyISAM tables support full-text keys, which allow the storage engine to look up
records quickly by words in the middle of character strings. In contrast, a regular B-
tree index can only be used to look up records based on the entire value or at least a
prefix of the key.

The full-text search capabilities are highly customizable. This option represents one
of the many full-text search configuration options. During full-text indexing, in order
to improve the quality of the index, some frequently used words are ignored. For
example, if the text column contains regular English sentences, there is little value to
indexing the word the, as it will appear in an overwhelming majority of the records.
Such words are called stop words.

By default, MySQL uses a built-in list of stop words defined by the ft_precompiled_
stopwords array in myisam/ft_static.c. It works very well if the text you are indexing is
a collection of standard English sentences, but it will likely be unsuitable if used for
other languages or if the collection does not contain regular text. You can create your

92 | Chapter 5: Configuration Variables

own stop word list and specify it with this option. Note that if you change the stop
word list, it is necessary to reindex the existing tables, which can be done with
REPAIR TABLE tbl_name QUICK.

To learn more about how full-text indexing works, take a look at:

myisam/ft_boolean_search.c
myisam/ft_eval.c
myisam/ft_nlq_search.c
myisam/ft_parser.c
myisam/ft_static.c
myisam/ft_stem.c
myisam/ft_stopwords.c
myisam/ft_update.c

innodb_buffer_pool_size
This buffer setting is one of the most important InnoDB variables. It controls how
much memory is used to cache both InnoDB table data and indices. Note that
InnoDB differs from MyISAM in the way the table data is cached. MyISAM caches
only the keys, and simply hopes the OS will do a good job caching the data. InnoDB
does not put any faith in the OS and takes the matter of caching the data into its own
hands.

To learn more about how the InnoDB buffering works, start by taking a look at buf_
pool_init(), buf_page_create(), and buf_page_get_gen() in innobase/buf/buf0buf.c.
Also take a look at the macro wrappers for buf_page_get_gen() in innobase/include/
buf0buf.h, particularly buf_page_get(), which is used most frequently in the code.
The same file also contains an extensive explanation of the buffering internals.

innodb_flush_log_at_trx_commit
InnoDB by design has much more stringent data safety requirements than MyISAM.
It tries very hard to make sure that the data is still consistent with the absolute mini-
mum loss even if you turn the power off in the middle of a transaction. However, a
fine balance must be achieved between performance and data safety, and each appli-
cation has its own standards.

InnoDB maintains a transaction log that is used for recovery during server startup.
The recovery is attempted regardless of whether there was a crash or not. In the case
of a crash, the log has pending transactions to redo. If there was no crash, no pend-
ing transactions are found in the log, so there is nothing to be done.

We can see, therefore, that the integrity of the transaction log is crucial in the recovery
process. One way to ensure its integrity is to flush it to disk every time a transaction is
committed. This allows us to recover every transaction that gets committed in the case
of a crash. However, if the application performs short transactions frequently, this

Interesting Aspects of Specific Configuration Variables | 93

becomes a performance killer. Each log flush implies at least one disk write, and even
with modern disks you can only do so many of them per second, although InnoDB
can group commits to overcome this limitation to a certain extent.

This problem can be addressed by slightly reducing the stringency of the data safety
requirements, and flushing the log to disk only once per second. With this approach,
under the assumption of intact disk I/O (something we can expect from properly
functioning hardware and operating system), our data is still consistent but could be
up to one second old after the recovery. For many applications this is a negligible risk
and is worth the hundred-fold or so improvement in performance that comes from a
dramatic reduction in disk writes.

When innodb_flush_log_at_trx_commit is set to 0, the log buffer is written out to the
logfile once per second, and the flush-to-disk operation is performed on the file descrip-
tor, but nothing is done during a transaction commit. When this value is 1, during each
transaction commit the log buffer is written out to the logfile, and the flush-to-disk
operation is performed on the file descriptor. When set to 2, during each commit the log
buffer is written out to the file descriptor, but the flush-to-disk operation is not per-
formed on it. However, the flushing on the file descriptor takes place once per second.

I must note that the once-per-second flushing is not 100 percent guaranteed due to
the process scheduling issues (for example, we might not get the CPU right at the
time when we would like to flush), but an attempt is made, and except for the cases
of extreme CPU overload, the actual intervals are very close to one second. When the
server gets the CPU, it will check whether it has been a second since the last flush,
and do another if it is time.

For further study of this option, take a look at srv_master_thread() in innobase/srv/
srv0srv.c (look for calls to the log_buffer_flush_to_disk() function) and trx_
commit_off_kernel() in innobase/trx/trx0trx.c (look for calls to the log_write_up_
to() function).

innodb_file_per_table
MyISAM tables, since the very beginning, have had the advantage of easy backup
and copying on a per-table basis without any involvement on the part of the server.
This is possible because a MyISAM table is stored in three files: table_name.frm for
the table definition, table_name.MYD for the data, and table_name.MYI for the keys.

When InnoDB was introduced into MySQL, many users missed the convenience of
table manipulation on the file system level. Initially InnoDB tables could reside only
in the tablespace file or raw device. However, version 4.1.1 added the ability to place
each table in its own file.

When enabled, innodb_file_per_table causes new tables to have their index and
data stored in a separate file, table_name.ibd. Nevertheless, this does not give the user
the freedom to manipulate those files like MyISAM. As of this writing, InnoDB still

94 | Chapter 5: Configuration Variables

stores a lot of meta information in its global tablespace, which makes such manipula-
tions impossible, although work is in progress to facilitate those operations and
make it possible to copy .ibd files from one server instance to another.

At this point, innodb_file_per_table only helps with backing up and restoring indi-
vidual tables on the same server, and even that requires some tricks. The backup
must be taken either when the server is down, or after all transactions have been
committed and no new ones have started. To restore, you first run ALTER TABLE tbl_
name DISCARD TABLESPACE, then copy the .ibd file into the appropriate database direc-
tory, and then run ALTER TABLE tbl_name IMPORT TABLESPACE.

Note that this option is of type NO_ARG. This means that it does not take a regular
non-Boolean argument. If present, it is on; if absent, it is off. It can, however, option-
ally take a Boolean argument of 1 or 0.

For more details on how this option works, study dict_build_table_def_step() in
innobase/dict/dict0crea.c. Look for the srv_file_per_table variable.

innodb_lock_wait_timeout
Unlike the MyISAM storage engine, which supports only table locks, InnoDB can
lock individual records, which is known as row level locking. This can bring great
performance benefits for a wide variety of applications, but it unfortunately also
introduces a problem: potential deadlocks. Let’s say, for example, that thread 1
acquires an exclusive lock on record A. In the meantime, thread 2 acquires an exclu-
sive lock on record B. Thread 1 then, while still holding the lock on A, attempts to
acquire a lock on B, but has to wait for thread 2 to release it. In the meantime, thread
2 is trying to lock record A while still holding the lock on B. Thus neither one can
progress, and we have a deadlock condition.

While it is possible to use an algorithm that avoids potential deadlocks, such a strat-
egy can very easily cause severe performance degradation. InnoDB approaches the
problem from a different angle. Normally deadlocks are very rare, especially if the
application was written with some awareness of the problem. Therefore, instead of
preventing them, InnoDB just lets them happen, but it periodically runs a lock detec-
tion monitor that frees the deadlock “prisoner” threads and allows them to return
and report to the client that they have been aborted because they’ve been waiting for
their lock longer than the value of this option.

Note that the deadlock monitoring thread does not actually examine the sequence of
the locks each thread is holding to figure out the existence of a logical database dead-
lock. Rather, it assumes that if a certain thread has exceeded the time limit in wait-
ing for a lock that it requested, it is probably logically deadlocked. Even if it is not, it
doesn’t matter—the user would appreciate getting an error message rather than wait-
ing indefinitely while nothing productive is being accomplished.

The deadlock detection thread is implemented in srv_lock_timeout_and_monitor_
thread() in innobase/srv/srv0srv.c.

Interesting Aspects of Specific Configuration Variables | 95

innodb_force_recovery
In a perfect world, this option would never be needed in a trasnactional database.
But, unfortunately, some very unexpected things happen. Even a perfectly imple-
mented transactional system with a perfect logic still depends on the assumption that
it will read back from the disk exactly what it wrote to it last time. Any computer
professional who has been around knows that this assumption is sometimes not true
for a number of reasons: hardware failure, operating system bugs, user errors, etc.
Additionally, InnoDB itself, although exceptionally robust, might still have a bug.
The bottom line: there are times when the tablespace gets corrupted so badly that
the standard recovery algorithm fails.

Again, from the purely theoretical point of view, corruption would force us to say
that whatever we have on disk in place of our old tablespace is just a bunch of ran-
dom data. Fortunately, in most practical situations there exists a better answer. Usu-
ally, the fatal corruption destroys only a couple of pages, while the rest of the data is
intact. It is therefore possible, perhaps by way of a semi-educated guess at times, to
recover most of the lost data.

This option tells InnoDB how hard to try to recover the lost data. 0 means not to go
beyond the standard recovery algorithm, while 6 means to bring the database up at
all costs and then try hard to run the queries without crashing. If the value of this
option is greater than 0, no queries that update the tables are allowed. The user is
expected to dump the tables salvaging the data, and then re-create a clean tablespace
and repopulate it.

To learn more about what happens when you force a recovery, search for the vari-
able srv_force_recovery in the following files:

innobase/buf/buf0buf.c
innobase/dict/dict0dict.c
innobase/fil/fil0fil.c
innobase/ibuf/ibuf0ibuf.c
innobase/log/log0recv.c
innobase/row/row0mysql.c
innobase/row/row0sel.c
innobase/srv/srv0srv.c
innobase/srv/srv0start.c
innobase/trx/trx0sys.c
innobase/trx/trx0undo.c

init-file
This option runs a set of SQL commands from the specified file on server startup. One
of the possible uses is to load the data from disk-based tables into in-memory (i.e.,
MEMORY) tables for faster access.

96 | Chapter 5: Configuration Variables

init-file can also be used to verify the integrity of certain data, perform a cleanup,
ensure that the important tables exist, or do something else of that nature. For exam-
ple, you could put SET GLOBAL var=value or LOAD INDEX INTO CACHE into it.

To learn more about this option, study read_init_file() and bootstrap() in sql/
mysqld.cc, as well as handle_bootstrap() in sql/sql_parse.cc.

key_buffer_size
MyISAM storage engine caches table keys. This option controls the size of the
MyISAM key cache. Note that there is no option to set the data cache in MyISAM.
Unlike InnoDB, MyISAM hopes that the operating system will do a good job cach-
ing, which does happen very often on Linux.

To learn more about how the MyISAM key cache works, take a look at mysys/mf_
keycache.c.

language
This option specifies the path to the directory containing the error message file
errmsg.sys. Different directories contain files in different languages, thus the name of
the option.

I find this option interesting for a couple of reasons. Unlike many applications of
MySQL’s degree of complexity—which often do not run without a suite of configu-
ration files, shared libraries, and other paraphernalia—the mysqld binary is not
nearly as capricious when you copy it to another system and try to run it. However,
there is one external file it will absolutely not run without: errmsg.sys. When you are
trying to run some quick and dirty test on a system with a particular binary without
having to install all of the MySQL files, you can copy mysqld and errmsg.sys to some
directory, e.g., /tmp/mysql and execute something like this to start the server:

/tmp/mysql/mysqld --skip-grant --skip-net \
--datadir=/tmp/mysql --socket=/tmp/mysql/mysql.sock \
--language=/tmp/mysql &

Thus, language has the honor of being one of the options needed to start a lean,
inconspicuous “parachuted into the enemy camp” MySQL server.

Another distinction of this option and its associated MySQL functionality is that it
serves as a creative language-learning tool. By starting MySQL with different lan-
guage options, you can read error messages in different languages, which helps you
build some basic technical vocabulary or at least acquire a collection of silly phrases
to entertain unsuspecting natives. Back in the days of 3.23 when MySQL had only
190 error messages, I jokingly proposed to my colleagues a book title, Learn Swedish
in 190 Days Through MySQL Error Messages. As of this writing, the number is up to

Interesting Aspects of Specific Configuration Variables | 97

301. As MySQL continues to increase in functionality, the proposed book is becom-
ing less and less marketable due to the increase in the number of error messages, and
therefore, the days one would need to learn Swedish.

The server error-message numbers are defined in include/mysqld_error.h. The num-
bering starts from 1,000. For each code, there is a corresponding message in the
sequential order of numeric codes in sql/share/language_name/errmsg.txt. The build
process creates errmsg.sys from errmsg.txt using a utility called comp_err, which is a
part of the source tree. The source of comp_err is in extra/comp_err.c.

In version 5.0 the error message maintenance was simplified, and all of the error-
message data is now contained in one file, errmsg.txt.

To learn more about how MySQL deals with error messages, take a look at init_
errmessage() from sql/derror.cc, and at the ER() macro from sql/unireg.h.

log
This option enables the general activity log, which records every command. Some-
times MySQL developers call it the query log. It is very helpful for debugging clients,
but on the other hand, the log grows very fast on active servers, and therefore the
option should be used with care.

To learn more about it, take a look at the MYSQL_LOG class in sql/sql_class.h and sql/
log.cc. The actual logging for this type of log happens in the function:

MYSQL_LOG::write(THD *,enum enum_server_command ,const char*,...)

Note that the logging code was refactored in version 5.1. For versions 5.1 and later,
additional log classes were added and moved to sql/log.h. The method that writes to
the general log has also changed its signature to:

bool MYSQL_LOG::write(time_t event_time, const char *user_host, uint user_host_len,
int thread_id, const char *command_type, uint command_type_len, const char *sql_
text, uint sql_text_len)

log-bin
This option enables the update log in binary format (thus -bin in the name). It is pri-
marily used for replication on a replication master, but it can also be used for incre-
mental backup. The logging happens on the logical level; i.e., queries along with
some meta information are being logged. This option was introduced in version 3.23
during the development of replication.

For a quick introduction to how the binary logging works, take a look at MYSQL_LOG::
write(Log_event*). However, the details of the format of the log are discussed in
Chapter 12.

98 | Chapter 5: Configuration Variables

log-isam
This option keeps track of the low-level MyISAM storage engine operations, such as
opening and closing tables, writing or reading the records, index file status queries and
updates, and other functions. The log can be viewed with the myisamlog command-line
utility, whose source can be found in myisam/myisamlog.c.

The logging functions are implemented in myisam/mi_log.c. The log itself and the
output of myisamlog are discussed in greater detail in Chapter 10.

This option has existed since the very early days of MySQL (in pre-3.23 it logged
ISAM activity, as the MyISAM storage engine did not yet exist). It has been helpful in
debugging MyISAM problems on numerous occasions, and is a great tool for learn-
ing about MyISAM.

log-slow-queries
This option enables the logging of queries that the optimizer believes are less than
optimal. There are two criteria: execution time (controlled by the long_query_time
option) and key use.

If you ask a MySQL expert to help you troubleshoot a performance problem, proba-
bly the first thing he will tell you to do is to enable log-slow-queries along with log-
queries-not-using-indexes (log-long-format for versions older than 4.1), and exam-
ine it to account for every query that hits that log.

The logging is implemented using the standard MySQL log class in sql/log.cc. How-
ever, for a budding MySQL hacker perhaps the most interesting part of the source
associated with this option is the following segment out of sql/sql_parse.cc:

 if ((ulong) (thd->start_time - thd->time_after_lock) >
 thd->variables.long_query_time ||
 ((thd->server_status &
 (SERVER_QUERY_NO_INDEX_USED | SERVER_QUERY_NO_GOOD_INDEX_USED)) &&
 (specialflag & SPECIAL_LOG_QUERIES_NOT_USING_INDEXES)))
 {
 long_query_count++;
 mysql_slow_log.write(thd, thd->query, thd->query_length, start_of_query);
 }

As you can see, this code fragment controls the decision on which queries get logged.
If your system runs a lot of queries that are raising false alarms (or perhaps you have
your own definition of slow), you might find it beneficial to play with this area of
code. One simple test you could add is to check whether thd->examined_row_count is
above a certain threshold.

Interesting Aspects of Specific Configuration Variables | 99

max_allowed_packet
MySQL network communication code was written under the assumption that que-
ries are always reasonably short, and therefore can be sent to and processed by the
server in one chunk, which is called a packet in MySQL terminology. The server allo-
cates the memory for a temporary buffer to store the packet, and it requests enough
to fit it entirely. This architecture requires a precaution to avoid having the server run
out of memory—a cap on the size of the packet, which this option accomplishes.

The code of interest in relation to this option is found in sql/net_serv.cc. Take a look
at my_net_read(), then follow the call to my_real_read() and pay particular atten-
tion to net_realloc().

This variable also limits the length of a result of many string functions. See sql/field.cc
and sql/item_strfunc.cc for details.

max_connections
Each new client connection consumes a certain amount of system resources. Many
operating systems do not fare well when the resources are limited. This applies par-
ticularly to memory. This option puts a cap on the number of maximum connec-
tions the server is willing to take. The idea is to have the MySQL server throttle itself
down before it hijacks the system in case of some unexpected load spike.

The code relating to this option is fairly simple and is located at the start of create_
new_thread() in sql/mysqld.cc.

max_heap_table_size
A heap table is MySQL jargon for an in-memory table. The name comes from the fact
that it is allocated from the program’s heap. In-memory tables are very fast. How-
ever, they require a precaution—they can be quite easily populated to the point of
having the system run out of memory. This option puts a cap on how big each in-
memory table can get.

Note that this option will not keep a malicious user from performing a denial-of-
service attack; she can create a large number of in-memory tables of the allowed
size, overrunning the memory that way.

To study the implementation of the option, first examine ha_heap::create() in sql/ha_
heap.cc and follow it to heap_create() in heap/hp_create.c. Then start in ha_heap::
write_row() in sql/ha_heap.cc and follow it to heap_write() in heap/hp_write.c. Follow
it to next_free_record_pos() in the same file. The following block does the magic:

if (info->records > info->max_records && info->max_records)
 {
 my_errno=HA_ERR_RECORD_FILE_FULL;
 DBUG_RETURN(NULL);
 }

100 | Chapter 5: Configuration Variables

max_join_size
This is another option designed primarily to keep buggy applications and inexperi-
enced users from taking the server down. It tells the optimizer to abort the queries
that it believes would require it to examine more than the given number of record
combinations.

On the code level, the magic happens in the following block inside JOIN::optimize()
in sql/sql_select.cc:

if (!(thd->options & OPTION_BIG_SELECTS) &&
 best_read > (double) thd->variables.max_join_size &&
 !(select_options & SELECT_DESCRIBE))
 { /* purecov: inspected */
 my_message(ER_TOO_BIG_SELECT, ER(ER_TOO_BIG_SELECT), MYF(0));
 error= 1; /* purecov: inspected */
 DBUG_RETURN(1);
 }

max_sort_length
The MySQL record-sorting algorithm (knows as filesort) uses fixed-size key values
for sorting. This requires memory allocations in proportion to the maximum possi-
ble size of a given key. If sorting were to be done using the full length of a blob or
text column, it could require enormous amounts of memory allocation, since those
columns could potentially be as big as 4 GB (for a LONGBLOB). To solve the problem,
MySQL puts a limit on the length of the key prefix it will use for sorting. The trade
off is that the sort results are correct only to the prefix values.

This variable imposes a limit on the length of the sort key prefix. Originally, this cut-
off point for the BLOB sort key was 1,024. However, arbitrary magic numbers are bad,
so it was made to be a parameter, which is controlled by this option.

On the code level, the turning point is in the following lines inside sortlength() in
sql/filesort.cc:

if (sortorder->field->type() == FIELD_TYPE_BLOB)
 sortorder->length= thd->variables.max_sort_length;

myisam-recover
This option enables the automatic repair of corrupted MyISAM tables as soon as the
MyISAM storage engine discovers the corruption. Normally corruptions should
never happen. However, power can fail, the operating system may crash or have a
bug in the I/O code, and MySQL itself may crash or have a bug in the MyISAM stor-
age engine. While the MyISAM tables lack the robustness of InnoDB for recovery
from such crashes, most of the time even the most severe problems can be overcome
with a table repair, often losing no more than just one record.

Interesting Aspects of Specific Configuration Variables | 101

With this option disabled, the repair would have to be done using the REPAIR TABLE
command (online), or the myisamchk utility (offline). The advantage of enabling it is
fairly obvious. Suppose that, in the middle of the night, a small table somehow gets
corrupted. It is very nice not to get awakened by your pager telling you that your web
application is down when all you have to do to fix it is a manual repair. The disad-
vantage is that this option could potentially trigger a large CPU- and I/O-intensive
repair without your knowledge, making things a lot worse for the end user during
that time.

The code related to this option, although conceptually very simple, is perhaps a bit
difficult to follow. The storage engine class (a subclass of handler) can optionally
define the bool auto_repair() method. The default implementation returns false;
however, bool ha_myisam::auto_repair() returns true if myisam_recover_opt is not 0.
openfrm() in sql/table.cc attempts to open the table. On failure, it checks whether the
storage engine reported that the table is corrupted, and then, if auto_repair()
returns true, sets the crashed flag in its TABLE* argument, which is the table descrip-
tor. When openfrm() returns to its caller open_unireg_entry() in sql/sql_base.cc, the
crashed flag is checked, and a repair is attempted if it is set.

A good practical exercise for a budding MySQL hacker is to change bool ha_myisam::
auto_repair() in sql/ha_myisam.h so that it reports the auto repair capabilities only
for the tables that are named with a separate configuration option.

query_cache_type
MySQL has a fairly unique feature: it can cache results of queries. One may ask why
in the world an application would run the same query over and over on the data that
has not changed. However, MySQL users reported on average about a 60 percent
improvement in performance in their applications after this feature appeared for the
first time in version 4.0.

This option sets the caching strategy. The possible values are 0 for no cache, 1 to
cache all queries except the ones with the SQL_NO_CACHE flag, and 2 to cache only the
ones with the SQL_CACHE flag.

This is one of the many options that control the behavior of the query cache. To
learn about how the query cache works, study sql/sql_cache.cc.

read_buffer_size
Although the MyISAM storage engine does not cache data rows in general, a read-
ahead buffer is used when performing sequential scans. This option controls its size.

On the code level, two sections are worth studying in connection with this option.
The first one is from init_read_record() in sql/records.cc:

102 | Chapter 5: Configuration Variables

info->read_record=rr_sequential;
 table->file->ha_rnd_init(1);
 /* We can use record cache if we don't update dynamic length tables */
 if (!table->no_cache &&
 (use_record_cache > 0 ||
 (int) table->reginfo.lock_type <= (int) TL_READ_HIGH_PRIORITY ||
 !(table->db_options_in_use & HA_OPTION_PACK_RECORD) ||
 (use_record_cache < 0 &&
 !(table->file->table_flags() & HA_NOT_DELETE_WITH_CACHE))))
 VOID(table->file->extra_opt(HA_EXTRA_CACHE,
 thd->variables.read_buff_size));

As we follow the call to handler::extra_opt() in the case of MyISAM table, we even-
tually end up in mi_extra() from myisam/mi_extra.c. The buffer allocation happens
in the following section:

cache_size= (extra_arg ? *(ulong*) extra_arg :
 my_default_record_cache_size);
 if (!(init_io_cache(&info->rec_cache,info->dfile,
 (uint) min(info->state->data_file_length+1,
 cache_size),
 READ_CACHE,0L,(pbool) (info->lock_type != F_UNLCK),
 MYF(share->write_flag & MY_WAIT_IF_FULL))))
 {
 info->opt_flag|=READ_CACHE_USED;
 info->update&= ~HA_STATE_ROW_CHANGED;
 }

relay-log
This option rarely needs to be set because the default value is usually acceptable.
However, it was included because its presence and name illuminated the internal
workings of the MySQL replication.

MySQL replication uses a master/slave paradigm. The master logs its updates. The
slave stays connected to the master and continuously reads the contents of the mas-
ter update log, known in MySQL jargon as the binary log. The slave then applies the
updates it reads from the master to its copy of the data, and thus is able to stay in
sync.

In the 3.23 version, there was only one slave thread that applied the updates immedi-
ately. This worked fine when the slave was able to keep up with the master. How-
ever, there were situations when the slave fell behind a lot. Were the master to
experience a fatal unrecoverable crash, the slave would never get the data it had not
yet replicated. To address this problem, the slave algorithm was reworked in version
4.0. The slave now has two threads: one for network I/O, and the other for applying
the SQL updates. The I/O thread reads the updates from the master and appends
them to the so-called relay log. The SQL thread in turn reads the contents of the
relay log, and applies them to the slave data.

Interesting Aspects of Specific Configuration Variables | 103

Learning more about this option really means understanding how the replication is
implemented on the slave. To get started, take a look at handle_slave_sql() and
handle_slave_io() in sql/slave.cc. Note that both are declared with the pthread_
handler_decl() macro, and might be easy to miss on a casual examination. The rep-
lication is discussed in greater detail in Chapter 12.

server-id
This option assigns a numeric ID to the server to be identified among its replication
peers on the network. The need for it arose from the following situation. Suppose
server A is a slave of server B, which in turn is a slave of server C, which is a slave of
server A. An update happens on server A. B picks it up from the binary log of A,
applies it and logs it to its own binary log. C picks it up from the binary log of B,
applies it, and again logs it to its own binary log. Then A sees it in the binary log of
C. It should not apply it. There has to be some way to tell A that the update it sees in
the binary log of C originated from A, and therefore should be ignored.

The solution was to assign each server participating in replication a unique 32-bit ID,
similar in concept to an IP address. Each binary log event is tagged with the ID of the
server that originated it. When a slave applies a binary log event received from
another server, it logs it with whatever server ID was in the log event record rather
than its own. If it sees that the event has its own ID, it does not apply it (unless
replicate-same-server-id option is enabled). This breaks potentially infinite update
loops in a circular replication topology.

To learn more about this option, search for server_id in sql/log_event.h, sql/log_
event.cc, and sql/slave.cc.

skip-grant-tables
This option tells the server to start without loading the access privilege tables. This
means two things. First, they do not need to exist. Second, since they are not used,
the server will positively authenticate any set of credentials from any host that can
establish a connection to the server.

This option is particularly useful when you have lost the MySQL root user pass-
word. You can start the server with skip-grant-tables, connect to it, use SQL state-
ments to manually edit the privilege tables, and then either issue FLUSH PRIVILEGES or
just restart the server.

For security reasons, it is recommended that you also use skip-networking in conjunc-
tion with skip-grant-tables. Otherwise, anybody on the network who can get to your
MySQL port will have unlimited access to your server. If you take this security precau-
tion, FLUSH PRIVILEGES is not enough to put the server into its normal mode, and a
restart with regular options is required to enable network connections.

104 | Chapter 5: Configuration Variables

This option is also useful when you want to deploy a minimum installation of the
server. By eliminating the need for privilege tables, you are able to run an instance of
MySQL server with only two files: mysqld and errmsg.sys.

The handling of this option in the source code is fairly simple, as you would expect.
If it is set, on initialization acl_init() from sql/sql_acl.cc is called with the second
argument set to 1, which makes it skip reading the privilege tables. Additionally,
grant_init() from sql/sql_acl.cc is not called at all, which leaves the initialized flag
(a static variable in sql/sql_acl.cc) set to 0. acl_getroot(), which is the entry point for
user authentication lookup, short-circuits and returns 0 (success), setting all the bits
in the access mask thd->master_access. This enables the client to have unrestricted
access to the server functionality.

skip-stack-trace
No matter how hard you try to avoid them, crashes happen. Having proper debug-
ging information is critical to making sure the same type of crash does not happen
again. MySQL users have had a difficult time collecting such information. An effort
has been made to help them create meaningful bug reports.

On an x86 or Alpha Linux, the MySQL server binary is capable of unwinding its own
stack and printing the stack trace when it receives a fatal signal such as SIGSEGV. In
addition, the postmortem diagnostic message includes the query that was executing
as well as the settings of the variables that are most likely to cause a crash. Although
reliable in most cases, the reported values should always be taken with at least a
small grain of salt. If the server crashed already, the memory could very well be seri-
ously corrupted, making the reported data absolutely bogus.

This report has been helpful on many occasions in catching a wide range of bugs,
including the ones that only happened in some production environments and could
not be duplicated otherwise.

By default, the stack tracing takes place when a fatal signal is received; however,
sometimes it is not desirable (e.g., if you are trying to debug the crash in a debug-
ger). This option turns off this post-crash self-diagnostic.

The stack tracing code can be found in sql/stacktrace.c. The entry point is print_
stacktrace().

slave-skip-errors
The slave replication algorithm was originally designed to stop replicating if an error
was encountered when the replicated query failed on the slave. Indeed, if it succeeded
on the master, and the slave has the same data as the master did when it succeeded,
there is no reason for it to fail. If it does, you would ideally want to stop replicating
and have the DBA check things out manually to verify the integrity of the data.

Interesting Aspects of Specific Configuration Variables | 105

This approach, however, proved undesirable in many situations. In practice, most
applications that use MySQL have a high degree of record isolation. In other words,
although a table may contain millions of records, if one record is incorrect or gone
altogether, the problem can be fixed manually or even simply ignored. In those situa-
tions, it is more important for the replication to progress in a timely manner than for
the data on the slave to always be a perfect replica of the master. And if this is a pri-
ority, errors such as a duplicate key error can be simply ignored as the replication
continues.

This option tells the slave server which error codes it should ignore. The error codes
to ignore can be specified in a comma-delimited list, or one could just use the key-
word all to ignore all errors.

To see how this option works, take a look at Query_log_event::exec_event() and
ignored_error_code() in sql/log_event.cc.

When records need to be sorted, MySQL uses an algorithm that is known as filesort
in MySQL jargon. The record set is broken into chunks, and each chunk is sorted
with a radix sort. If there is more than one chunk, each sorted chunk is written out
to a temporary file while being merged with the already sorted collection. This way,
we can get the best of both worlds: the speed of a radix sort and the ability to sort
large collections of records.

sort_buffer_size
This option indirectly controls the size of the chunk sorted in memory with the radix
sort by specifying how much memory the radix sort is allowed to use.

To learn more about the filesort algorithm and its implementation, take a look at sql/
filesort.cc.

sql-mode
Despite ANSI SQL being a standard, when run with defaults most databases (includ-
ing MySQL) end up speaking it with a bit of an accent, and what is worse, not being
tolerant of the accents spoken by other databases. This may present a problem when
porting applications.

This option is an accent adjuster. By setting it to different values, you can tell MySQL
that a REAL is an alias for FLOAT instead of DOUBLE; a space is allowed between the
database and table names; || means string concatenation rather logical OR; and other
tweaks needed to port an application from some other database to MySQL without
changes in its code.

There are a lot of places in the code that are affected by the use of this option. Some
things to do to become familiar with how it works:

106 | Chapter 5: Configuration Variables

• Examine the sql_mode_names variable definition in sql/mysqld.cc.

• Look at fix_sql_mode() in sql/set_var.cc.

• Search for sql_mode in sql/sql_yacc.yy, sql/sql_show.cc, sql/sql_parse.cc, and sql/
sql_lex.cc.

table_cache
table_cache is one of the core parts of the MySQL code. It caches table descriptors,
which greatly increases the speed of the queries. Each time a table is referenced in
query, the table cache may already have the needed descriptor, and the expensive
operation of initializing one does not need to be done.

This option controls how many table descriptors (not tables!) can be cached at the same
time. You can view the contents of the table cache with the SHOW OPEN TABLES command.

To learn more about the table cache, take a look at open_table() in sql/sql_base.cc
and follow its execution.

temp-pool
This option exists specifically to work around a design flaw in the Linux kernel (at least
in version 2.4). When a process repeatedly creates and removes files with unique
names, the kernel ends up allocating large amounts of memory that it never releases.
MySQL may on occasion need to create a temporary file to resolve a query. On a large
site with a lot of traffic and a wide diversity of queries, this may take place frequently
enough to cause serious problems. For most users, it did not until MySQL was put to
use on one very loaded site with a number of frequently executing, sophisticated que-
ries. MySQL developers responded with a workaround by adding an option to limit the
possibilities for the name of the temporary table to a smaller set of names.

To see how this option works, take a look at the beginning of create_tmp_table() in
sql/select.cc.

transaction-isolation
This option was primarily the result of the introduction of InnoDB into the MySQL
code base. When two or more different transactions occur in parallel, there are sev-
eral different models or sets of rules for what a read operation should return when
some data was written by another transaction but not yet committed. This set of
rules is known by the term of transaction isolation level.

Many transactional engines, including InnoDB, give the user an option to select a
desired transaction isolation level for a given transaction. This option allows you to
set a global transaction isolation level for the whole server.

To learn more about how this option works, study row_sel_get_clust_rec_for_mysql()
in innobase/row/row0sel.c.

107

Chapter 6 CHAPTER 6

Thread-Based Request Handling6

When implementing a server, a programmer is faced with a dilemma as to whether
to use threads or processes to handle requests. Both have advantages and disadvan-
tages. From its very inception, MySQL has used threads. In this chapter we discuss
the rationale, strengths and weaknesses, and implementation of thread-based request
handling in the MySQL server.

Threads Versus Processes
Perhaps the most important difference between a process and a thread is that a child
thread shares the heap (global program data) with the parent, while a child process does
not. This has a number of implications when you are deciding which model to use.

Advantages of Using Threads
Threads have been implemented in programming libraries and operating systems
industry-wide for the following reasons:

• Reduced memory utilization. The memory overhead of creating another thread
is limited to the stack plus some bookkeeping memory needed by the thread
manager.

• No advanced techniques required to access server-global data. If the data could
possibly be modified by another concurrently running thread, all that needs to
be done is to protect the relevant section with a mutual exclusion lock or mutex
(described later in this chapter). In the absence of such a possibility, the global
data is accessed as if there were no threads to worry about.

• Creating a thread takes much less time than creating a process because there is
no need to copy the heap segment, which could be very large.

• The kernel spends less time in the scheduler on context switches between
threads than between processes. This leaves more CPU time for the heavily
loaded server to do its job.

108 | Chapter 6: Thread-Based Request Handling

Disadvantages of Using Threads
Despite the importance of threads in modern computing, they are known to have
drawbacks:

• Programming mistakes are very expensive. If one thread crashes, it brings the
whole server down. One rogue thread can corrupt the global data, causing other
threads to malfunction.

• Programming mistakes are easy to make. A programmer must think constantly
about the possibility of some other thread doing things to cause trouble, and
how to avoid it. An extra-defensive programming approach is required.

• Threaded servers are notorious for synchronization bugs that are nearly impossi-
ble to duplicate in testing but happen at a very wrong time in production. The
high probability of such bugs is a result of having a shared address space, which
brings on a much higher degree of thread interaction.

• Mutex contention at some point can get out of hand. If too many threads try to
acquire the same mutex at the same time, this may result in excessive context
switching, with lots of CPU time spent in the kernel scheduler and very little left
to do the job.

• 32-bit systems are limited to 4 GB address space per process. Since all threads
share the same address space, the whole server is theoretically limited to 4 GB of
RAM even when there is a lot more physical RAM available. In practice the
address space starts getting very crowded at a much smaller limit, somewhere
around 1.5 GB on x86 Linux.

• The crowded 32-bit address space presents another problem. Each thread needs
some room for its stack. When a stack is allocated, even if the thread does not
use the majority of the allocated space, the address space of the server has to be
reserved for it. Each new stack reduces potential room for the heap. Thus, even
though there might be plenty of physical memory, it may not possible to have
large buffers, to have a lot of concurrent threads, and to give each thread plenty
of room for its stack at the same time.

Advantages of Using Forked Processes
The drawbacks of threads correspond to the strengths of using multiple processes
instead:

• Programming mistakes are not so fatal. Although a definite possibility, it is not
as easy for a rogue forked-server process to disrupt the whole server.

• Programming mistakes are much less likely. Most of the time, the programmer
only needs to think of one thread of execution, undisturbed by possible concur-
rent intruders.

Implementation of Request Handling | 109

• Much fewer phantom bugs. If a bug happens once, it is usually fairly easy to
duplicate it. With its own address space for each forked process, there is not
much interaction between them.

• On a 32-bit system, the issue of running out of address space is usually not as acute.

Disadvantages of Using Forked Processes
To wrap up our overview, I’ll list the problems with multiple processes, which mir-
ror the advantages of threads:

• Memory utilization is suboptimal. Possibly large memory segments are copied
unnecessarily when a child is forked.

• Special techniques are required to share data between processes. This makes it
cumbersome to access the data global to the server.

• Creating a process requires more overhead in the kernel than creating a thread. One
big performance hit is the need to copy the data segment of the parent process.
Linux, however, cheats in this area by implementing what is called copy-on-write.
The actual copy of a parent process page does not take place until the child or the
parent modifies that page. Until then, both use the same page.

• Context switches between processes are more time-consuming than between
threads because the kernel needs to switch the pages, file descriptor tables, and
other extra context info. Less time is left for the server to do the actual work.

In summary, a threaded server is ideal when a lot of data needs to be shared between
the connection handlers, and when the programming skills are not lacking. When it
came down to deciding which model was the right one for MySQL, the choice was
clear. A database server needs to have lots of shared buffers, and other shared data.

As far as the programming skills were concerned, they were not lacking at all. Just as a
good rider becomes one with the horse, Monty had become one with the computer. It
pained him to see system resources wasted. He felt confident enough to be able to write
virtually bug-free code, deal with the concurrency issues presented by threads, and even
work with a small stack. What an exciting challenge! Needless to say, he chose threads.

Implementation of Request Handling
The server listens in the main thread for connections. For each connection, it allo-
cates a thread to handle it. Depending on the server configuration settings and cur-
rent status, the thread may be either created anew or dispatched from the thread
cache. The client issues requests, and the server satisfies them until the client sends a
session-terminating command (COM_QUIT) or until the session ends abnormally. Upon
terminating the client session, depending on the server configuration settings and
status, the thread may either terminate or enter the thread cache to wait for another
request dispatch.

110 | Chapter 6: Thread-Based Request Handling

Structures, Variables, Classes, and API
Perhaps the most important class for threads is THD, which is a class for thread
descriptors. Nearly every one of the server functions inside the parser and optimizer
accepts a THD object as an argument, and it usually comes first in the parameter list.
The THD class is discussed in detail in Chapter 3.

Whenever a thread is created, its descriptor is put into a global thread list I_List<THD>
threads. (I_List<> is a class template for linked lists; see sql/sql_list.h and sql/sql_list.cc.)
The list is mainly used for three purposes:

• To provide the data for the SHOW PROCESSLIST command

• To locate the target thread when executing the KILL command

• To signal all threads to terminate during shutdown

Another list of I_List<THD> plays an important role: thread_cache. It is actually used
in a rather unexpected manner: as a means of passing a THD object instantiated by
the main thread to the thread waiting in the thread cache that is being dispatched to
handle the current request. For details, see create_new_thread(), start_cached_
thread(), and end_thread() in sql/mysqld.cc.

All operations related to creating, terminating, or keeping track of threads are pro-
tected by a mutex LOCK_thread_count. Three POSIX threads condition variables are
used in conjunction with threads. COND_thread_count helps with synchronization dur-
ing shutdown to make sure all threads have finished their work and exited before the
main thread terminates. COND_thread_cache is broadcast when the main thread
decides to wake up a cached thread and dispatch it to handle the current client ses-
sion. COND_flush_thread_cache is used by the cached threads to signal that they are
about to exit during shutdown or when processing SIGHUP.

In addition, a number of global status variables are used in relation to threads. They
are summarized in Table 6-1.

Table 6-1. Global variables related to threads

Variable definition Description

int abort_loop A flag to signal to all threads that it is time to clean up and exit. The server never forces
a thread to exit preemptively because doing so without giving it a chance to clean up
could cause serious data corruption. Rather, each thread is coded to pay attention to the
environment and exit when asked.

int cached_thread_count A status variable to keep track of the number of threads that have terminated and are
waiting to be dispatched to handle new requests. Can be viewed in the output of SHOW
STATUS under Threads_connected.

int kill_cached_threads A flag indicating that all cached threads should exit. The cached threads are waiting on
COND_thread_cache in end_thread(). They exit if they see that this flag is set.

Implementation of Request Handling | 111

Execution Walk-Through
The standard select()/accept() request dispatching loop is found in handle_
connections_sockets() in sql/mysqld.cc. After a fairly sophisticated combination of
tests of what could possibly go wrong in accept() on a wide variety of platforms, we
finally get to the following code segment:

 if (!(thd= new THD))
 {
 (void) shutdown(new_sock,2);
 VOID(closesocket(new_sock));
 continue;
 }

int max_connections A server configuration variable setting a limit on the maximum number of non-
administrative client connections the server is willing to accept. Once this limit is
reached, one additional administrative connection is allowed to give the DBA a
chance to fix the crisis caused by reaching this limit.

The purpose of this limit is to allow the server to put brakes on itself before it takes the
system down by utilizing too many resources.

The limit is controlled by the configuration variable max_connections, with the
default value of 100.

int max_used_connections A status variable keeping track of the maximum number of concurrent connections the
server has experienced since it was started. Its value can be viewed in the output of
SHOW STATUS under Max_used_connections.

int query_id A variable used for generating unique query ID numbers. Each time a query is sent to
the server, it is assigned the current value of this variable, following which the variable
is incremented by 1.

int thread_cache_size A server configuration variable specifying the maximum number of threads in the
thread cache. If set to 0 (the default), the thread caching is disabled. Controlled by the
configuration variable thread_cache_size.

int thread_count A status variable to keep track of how many threads exist at the moment. Can be
viewed in the output of SHOW STATUS under Threads_cached.

int thread_created A status variable to keep track of how many threads were created since the start of the
server. Can be viewed in the output of SHOW STATUS under Threads_created.

int thread_id A variable used for generating unique thread ID numbers. Each time a thread is started,
it is assigned the current value of this variable, following which the variable is incre-
mented by 1. Can be viewed in the output of SHOW STATUS under Connections.

int thread_running A status variable to keep track of the number of threads that are currently answering a
query. Incremented by 1 at the start of dispatch_command() in sql/sql_parse.cc,
and decremented by 1 toward the end of it. Can be viewed in the output of SHOW
STATUS under Threads_running.

Table 6-1. Global variables related to threads (continued)

Variable definition Description

112 | Chapter 6: Thread-Based Request Handling

This creates an instance of THD. After some additional THD object manipulation, the
execution descends into create_new_thread() in the same file, sql/mysqld.cc. A few
more checks and initializations, and we reach the conditional that determines how
the request handling thread is obtained. There are two possibilities: use a cached
thread or create a new one.

With the thread caching enabled, an old thread simply goes to sleep instead of exiting
when it is done serving client requests. When a new client connects, instead of just cre-
ating a new thread, the server first checks to see whether it has any sleeping threads in
the cache. If it does, it wakes one of them up, passing the THD instance as an argument.

Although caching threads could give a boost in performance on a heavily loaded sys-
tem, the original motivation for the feature was to debug a timing problem on Linux
on an Alpha system.

Alternatively, if the thread caching is disabled or there are no cached threads avail-
able, a new thread has to be created to handle the request.

The decision is made in the following test:

 if (cached_thread_count > wake_thread)
 {
 start_cached_thread(thd);
 }

start_cached_thread() from sql/mysqld.cc wakes a thread that is currently not serving
requests, if such a thread exists. The condition cached_thread_count > wake_thread guar-
antees the existence of a sleeping thread, so the function is never called if no cached
threads are sleeping. This also covers the case when the thread cache has been disabled.

If the test for cached thread availability comes out negative, the code turns to the
else part, where the job of spawning a new thread gets done in the following line:

if ((error=pthread_create(&thd->real_id,&connection_attrib,
 handle_one_connection,
 (void*) thd)))

The new thread starts off in handle_one_connection() from sql/sql_parse.cc.

handle_one_connection(), after some checks and initializations, gets down to business:

while (!net->error && net->vio != 0 && !thd->killed)
{
 if (do_command(thd))
 break;
}

Commands are accepted and processed as long as no loop exit condition is encoun-
tered. Possible exit conditions are:

• A network error.

• The thread is killed with the KILL command by the database administrator, or by
the server itself during the shutdown.

Thread Programming Issues | 113

• The client sends a COM_QUIT request telling the server it is done with the session,
in which case do_command() from sql/sql_parse.cc returns a nonzero value.

• do_command() returns a nonzero value for some other reason. Currently, the only
other possibility is if the replication master decides to abort the feed of updates
requested by a slave (or a client pretending to be a slave) through COM_BINLOG_DUMP.

Afterward, handle_one_connection() enters the thread termination/cleanup stage.
The key element of this code segment is the call to end_thread() from sql/mysqld.cc.

end_thread() starts with some additional cleanup but then hits the interesting part:
the possibility of putting the currently executing thread into the thread cache. The
decision is made by testing the following conditional:

if (put_in_cache && cached_thread_count < thread_cache_size &&
 ! abort_loop && !kill_cached_threads)

If end_thread() decides to cache this thread, the following loop is executed:

while (!abort_loop && ! wake_thread && ! kill_cached_threads)
 (void) pthread_cond_wait(&COND_thread_cache, &LOCK_thread_count);

The loop waits until it is awakened by start_cached_thread(), the SIGHUP signal han-
dler, or the shutdown routine. The code can tell that the signal to arise came from
start_cached_thread() by the nonzero setting of wake_thread. In such an event, it
picks up the THD object passed by start_cached_thread() from the thread_cache list,
and then returns (note the DBUG_VOID_RETURN macro) to handle_one_connection() to
start serving the new client.

If the thread does not get the chance of going into the thread cache, its fate is to ter-
minate through pthread_exit().

Thread Programming Issues
MySQL faces many of the same complications as other programs that depend on
threads.

Standard C Library Calls
When writing code that can be concurrently executed by several threads, functions
from external libraries must be called with extra care. There is always a chance that
the called code uses a global variable, writes to a shared file descriptor, or uses some
other shared resource without ensuring mutual exclusion. If this is the case, we must
protect the call by a mutex.

While exercising caution, MySQL must also avoid unnecessary protection, or it will
experience a decrease in performance. For example, it is reasonable to expect malloc()
to be thread-safe. Other potentially non-thread-safe functions such as gethostbyname()
often have thread-safe counterparts. The MySQL build configuration scripts test

114 | Chapter 6: Thread-Based Request Handling

whether these are available and use them whenever possible. If the appropriate thread-
safe counterpart is not detected, the protective mutex is enabled as the last resort.

Overall, MySQL saves itself a lot of thread-safety worries by implementing many stan-
dard C library equivalents in the portability wrapper in mysys and in the string library
under strings. Even when C library calls are made eventually, they happen through a
wrapper in most cases. If a call on some system unexpectedly turns out to lack thread
safety, the problem can be easily fixed by adding a protective mutex to the wrapper.

Mutually Exclusive Locks (Mutexes)
In a threaded server, several threads may access shared data. If they do so, each
thread must make sure the access is mutually exclusive. This is accomplished
through mutually exclusive locks, otherwise known as mutexes.

As the application’s degree of complexity increases, you face a dilemma as to how
many mutexes to use, and which ones should protect what data. On one end of the
spectrum, you could have a separate mutex for each variable. This has the advantage of
reducing the mutex contention to the minimum, but it has a few problems. What hap-
pens if you need to access a group of variables atomically? You have to acquire a mutex
for each individual variable. If you do so, you must make sure to always acquire them
in the same order to avoid deadlocks. The frequent calls to pthread_mutex_lock() and
pthread_mutex_unlock() would cause a performance degradation, and the program-
mer would be very likely to make a mistake in the order of calls and cause a deadlock.

On the other end of the spectrum is having a single mutex for everything. This makes
it very simple for the programmer—get the lock when accessing a global variable,
and release it when done. Unfortunately, this approach has a very negative impact on
performance. Many threads would be unnecessarily made to wait while one was
accessing some variable that the others did not need to have protected.

The solution is in some balanced grouping of the global variables and in having a
mutex for each group. This is what is done in MySQL to solve this problem.

Table 6-2 contains a list of global mutexes in MySQL, with descriptions of the
respective groups of variables they protect.

Table 6-2. Global mutexes

Mutex name Mutex description

LOCK_Acl Initialized but not used currently in the code. May be removed in the future.

LOCK_active_mi Protects the active_mi pointer, which points to the active replication slave
descriptor. At this point, the protection is redundant because the active_mi
value never gets changed concurrently. However, the protection will become
necessary when multi-master support is added.

LOCK_bytes_received Protects the bytes_received status variable, which keeps track of how many
bytes the server has received from all of its clients since it was started. Unused in
versions 5.0 and higher.

Thread Programming Issues | 115

LOCK_bytes_sent Protects the bytes_received status variable, which keeps track of how many
bytes the server has received from all of its clients since it was started. Unused in
versions 5.0 and higher.

LOCK_crypt Protects the calls to the Unix C library call crypt(), which is not thread-safe.

LOCK_delayed_create Protects the variables and structures involved in the creation of a thread to han-
dle delayed inserts. Delayed inserts return to the client immediately even if the
table is locked, in which case they are processed in the background by a delayed
insert thread.

LOCK_delayed_insert ProtectsI_List<delayed_insert>delayed_threads , a list of delayed
insert threads.

LOCK_delayed_status Protects the status variables that keep track of delayed insert operations.

LOCK_error_log Protects writes to the error log.

LOCK_gethostbyname_r Protects calls to gethostbyname() inside my_gethostbyname_r() in
mysys/my_gethostbyname.c on systems that do not have a native C library call
gethostbyname_r().

LOCK_global_system_variables Protects operations to modify global configuration variables from a client thread.

LOCK_localtime_r Protects the call to localtime() inside localtime_r() in mysys/my_
pthread.c on systems that do not have a native C library call localtime_r().

LOCK_manager Protects the data structures used by the manager thread, which currently is
responsible for periodically flushing the tables (if flush_time setting is not 0),
and the cleanup of Berkeley DB logs.

LOCK_mapped_file Protects the data structures and variables used in operations with memory-
mapped files. Currently there exists internal support for this functionality, but it
does not appear to be used anywhere in the code.

LOCK_open Protects the data structures and variables relevant to the table cache, and open-
ing and closing tables.

LOCK_rpl_status Protects the variable rpl_status, which was intended to be used in the fail-
safe automatic recovery replication. At this point, this is mostly dead code.

LOCK_status Protects the variables displayed in the output of SHOW STATUS.

LOCK_thread_count Protects the variables and data structures involved in the creation or destruction
of threads.

LOCK_uuid_generator Protects the variables and data structures used in the UUID() SQL function.

THR_LOCK_charset Protects the variables and data structures relevant to character set operations.

THR_LOCK_heap Protects the variables and data structures relevant to the in-memory (MEMORY)
storage engine.

THR_LOCK_isam Protects the variables and data structures relevant to the ISAM storage engine.

THR_LOCK_lock Protects the variables and data structures relevant to the table lock manager.

THR_LOCK_malloc Protects the variables and data structures relevant to the malloc() family call
wrappers. Mostly used with the debugging mode version of malloc() (see
mysys/safemalloc.c).

THR_LOCK_myisam Protects the variables and data structures relevant to the MyISAM storage
engine.

Table 6-2. Global mutexes (continued)

Mutex name Mutex description

116 | Chapter 6: Thread-Based Request Handling

In addition to global mutexes, there are a number of class/structure encapsulated
mutexes used to protect portions of that particular structure or class. There are also a
couple of file scope global (static) mutexes in the mysys library.

Read-Write Locks
A mutually exclusive lock is not always the best solution to protect concurrency-
sensitive operations. Imagine a situation when a certain variable is modified by only
one thread and only infrequently, but it is read by many others often. If we were to
use a mutex, most of the time one reader would end up waiting for the other to fin-
ish reading even though it could have just executed concurrently.

There is another type of lock that is more suitable for this situation: a read-write lock.
Read locks can be shared, while write locks are exclusive. Thus, multiple readers can
proceed concurrently as long as there is no writer.

Clearly, a read-write lock is able to do everything a mutex can, and more. Why not
use the read-write locks all the time? As the saying goes, there is no free lunch, and it
applies very well in this case. The extra functionality comes at the cost of greater
implementation complexity. As a result, read-write locks require more CPU cycles
even when the lock is obtained immediately.

Thus, in choosing the type of lock to use, one must consider the probability of first-
try failure to acquire it, as well as how it will be reduced by changing from a mutex
to a read-write lock. For example, if the typical use involves 1 failure for every 1,000
attempts, a read-write lock helps with concurrency once for every 999 times it wastes
the CPU. Even if changing to a read-write lock reduces the probability of failure to a
virtual zero, it is still not worth it.

However, if the probability of first-try failure is only 1 time out of 10, perhaps the 9
times of extra CPU cycles trying the read-write lock can be offset by the fact that on
the 10th time we actually get the lock and do not have to wait as long as we would
have if it were a mutex. On the other hand, if using the read-write lock in this partic-
ular case does not significantly reduce the probability of first-try failure, the CPU
overhead might still not be worth it.

Most MySQL critical regions are fairly short, which leads to a low probability of the
first-try failure. Thus, in most cases a mutex is preferred to a read-write lock. How-
ever, there are a few cases where a read-write lock is used. Table 6-3 summarizes the
read-write locks in MySQL.

THR_LOCK_net Currently used to protect the call to inet_ntoa() in my_inet_ntoa()
from mysys/my_net.c.

THR_LOCK_open Protects the variables and data structures that keep track of open files.

Table 6-2. Global mutexes (continued)

Mutex name Mutex description

Thread Programming Issues | 117

Synchronization
A threaded application is often faced with the problem of thread synchronization.
One thread needs to know that the other has reached a certain state. POSIX threads
provides a mechanism to accomplish this: condition variables. A thread waiting for a
condition can call pthread_cond_wait(), passing it the condition variable and the
mutex used in the given context. The call must also be protected by the same mutex.
A thread that believes it has reached the given condition may either signal it with
pthread_cond_signal() or broadcast it with pthread_cond_broadcast(). The signal or
the broadcast must also be protected by the same mutex that the waiting thread uses
with pthread_cond_wait(). A signaled condition wakes up only one thread that is
waiting for it, while a broadcast one wakes up all waiting threads.

MySQL uses several POSIX condition variables. They are summarized in Table 6-4.

Table 6-3. Read-write locks used by MySQL

Read-write lock name Read-write lock description

LOCK_grant Protects variables and data structures dealing with the access control.

LOCK_sys_init_connect Protects the system variable descriptor sys_init_connect against modifications
while the commands it stores are being executed. Thesys_init_connect system
variable descriptor stores the commands to be executed every time a new client con-
nects as specified by the init-connect configuration setting.

LOCK_sys_init_slave Protects the system variable descriptor sys_init_slave against modifications
while the commands it stores are being executed. The sys_init_slave system
variable descriptor stores the commands to be executed on the master every time a
slave connects to the master as specified by the init-slave configuration setting.

Table 6-4. Condition variables used by MySQL

Condition variable name Condition variable description

COND_flush_thread_cache Signaled by end_thread() in sql/mysqld.cc during the purging of the thread
cache to communicate to flush_thread_cache() (also in sql/mysqld.cc) that a
thread has exited. This gives flush_thread_cache() a chance to wake up and
check whether there are any more threads left to terminate. Used with the mutex
LOCK_thread_count.

COND_manager Signaled to force the manager thread (see sql/sql_manager.cc) to wake up and per-
form the scheduled set of maintenance tasks. Currently there are only two possible
tasks: clean up Berkeley DB logs and flush the tables. Used with the mutex LOCK_
manager.

COND_refresh Signaled when the data in the table cache has been updated. Used with the mutex
LOCK_open.

COND_thread_count Signaled when a thread is created or destroyed. Used with the mutex LOCK_
thread_count.

COND_thread_cache Signaled to wake up a thread waiting in the thread cache. Used with the mutex
LOCK_thread_count.

118 | Chapter 6: Thread-Based Request Handling

In addition to these condition variables, a number of structures and classes use local
conditions for synchronization of operations on that class or structure. There also
exist a couple of file scope global (static) condition variables inside the mysys library.

Preemption
The term preemption means interrupting a thread to give the CPU some other task.
MySQL generally uses the “responsible citizen” approach to preemption. The pre-
empting thread sets the appropriate flags, telling the thread being preempted that it
needs to clean up and terminate or yield. At that point, it becomes the responsibility
of the thread being preempted to notice the message and comply.

Most of the time this approach works very well, but there is one exception. If the
thread being preempted is stuck performing a blocking I/O, it will not have a chance
to check the preempting message flags. To address the problem, MySQL uses a tech-
nique known in MySQL developer terminology as the thread alarm.

A thread that is about to enter blocking I/O makes a request to receive an alarm sig-
nal after a timeout period with a call to thr_alarm(). If the I/O completes before the
timeout, the alarm is canceled with end_thr_alarm(). The alarm signal on most sys-
tems interrupts the blocking I/O, thus allowing the thread that is potentially being
preempted to check the flags and the error code from the I/O and to take the appro-
priate action. The action is usually to clean up and exit the I/O loop if preempted, or
else retry the I/O.

Both thr_alarm() and end_thr_alarm() take an alarm descriptor argument that must
be initialized with a call to init_thr_alarm() prior to its first use. The thread alarm
routines are implemented in mysys/thr_alarm.c.

119

Chapter 7 CHAPTER 7

The Storage Engine Interface7

MySQL provides a layer of abstraction that permits different storage engines to
access their tables using the same API. In the past, this interface was called the table
handler. More recently, the term storage engine was introduced. In the current termi-
nology, storage engine refers to the code that actually stores and retrieves the data,
while table handler refers to the interface between the storage engine and the MySQL
optimizer.

The abstract interface greatly facilitates the task of adding another storage engine to
MySQL. It was created during the transition from version 3.22 to version 3.23, and it
was instrumental in the quick integration of the InnoDB storage engine, which
brought in robust transactional capabilities, multi-versioning, and row-level locks. It
can be used for integrating custom storage engines, which permits you to quickly
develop an SQL interface to just about anything that knows how to read and write
records.

The interface is implemented through an abstract class named handler, which pro-
vides methods for basic operations such as opening and closing a table, sequentially
scanning through the records, retrieving records based on the value of a key, storing
a record, and deleting a record. Each storage engine implements a subclass of
handler, implementing the interface methods to translate the handler operations into
the low-level storage/retrieval API calls of that particular storage engine. Starting in
version 5.0, the handlerton structure was added to allow storage engines to provide
their own hooks for performing operations that do not necessarily involve one-table
instances such as initialization, transaction commit, savepoint, and rollback.

In this chapter we will examine the handler class and the handlerton structure, and
then provide—as a modestly-sized example you can study—a simple storage engine
for reading comma-delimited files.

120 | Chapter 7: The Storage Engine Interface

The handler Class
The handler class is defined in sql/handler.h and implemented in sql/handler.cc. Note
that it is a subclass of Sql_alloc (defined in sql/sql_list.h). Sql_alloc is a class with no
members that merely overrides the new and delete operators so that new allocates
memory from the memory pool associated with the connection, while delete does
nothing. Indeed, it does not need to, as all the memory in the memory pool is freed
at once with a call to free_root() from mysys/my_alloc.c during the cleanup stage
after executing a statement.

An instance of handler is created for each table descriptor. Note that it is possible to
have several table descriptors for the same table, and therefore just as many instances
of handler in the same server. The new index_merge join method in version 5.0 added
an interesting twist. In the past, the multiple handler instances for the same table
resulted only from having several copies of the table descriptor in the table cache,
and thus one handler instance per descriptor. Now, with the addition of index_merge,
additional handler instances may be created during optimization.

The data members of handler are documented in Table 7-1. The methods of handler
are documented in Table 7-2.

Table 7-1. handler data members

Member definition Member description

struct st_table *table Table descriptor associated with the given instance of
handler.

byte *ref Stores the value of the current record reference. The record ref-
erence is an internal, unique record identifier for the given table.
For this field, MyISAM uses the offset of the record in the data-
file. InnoDB uses the value of the primary key formatted in a spe-
cial way. MEMORY uses a pointer to the start of the record. The
length of the value is stored in the ref_length member.

byte *dupp_ref Additional “register” to store the reference to a record that
caused a unique key conflict when inserting a new record.

ulonglong data_file_length Length of the datafile, for engines that use one. The ones
that do not use a datafile “wing it” by storing in this variable
the combined length of all of the records plus the holes
where newly inserted records could be put. This value is used
in the output of SHOW TABLE STATUS.

ulonglong max_data_file_length Maximum possible length of the datafile referred to by the
data_file_length member. Appears in the output of
SHOW TABLE STATUS.

ulonglong index_file_length Length of the index file, for engines that use one. The ones that
do not use an index file put here the approximate amount of
memory or disk space used for storing the indexes for this table.
Appears in the output of SHOW TABLESTATUS.

ulonglong max_index_file_length Maximum possible length of the index file. Currently, only
MyISAM and ISAM handlers set this value.

The handler Class | 121

ulonglong delete_length The number of allocated but unused bytes. In MyISAM, the
amount of space occupied by records that have been marked
as deleted. Appears in the output of SHOW TABLE STATUS.

ulonglong auto_increment_value The value that will be assigned to the autoincrement column
on the next insert that does not specify a value for that col-
umn if no INSERT_IDwas set. This value can be set with an
AUTO_INCREMENT clause during table creation or with
ALTER TABLE.

ha_rows records The number of records in the table. InnoDB provides just an
estimate, due to the complications caused by multi-versioning.
Appears in the output of SHOW TABLE STATUS.

ha_rows deleted The number of records in the table that are marked as
deleted.

ulong raid_chunksize Associated with the RAID feature for MyISAM tables.
Removed in 5.1.

ulong mean_rec_length Average length of a record. Appears in the output of SHOW
TABLE STATUS.

time_t create_time Table creation time. Appears in the output of SHOW TABLE
STATUS.

time_t check_time Last time the table was checked with CHECK TABLE.
Appears in the output of SHOW TABLE STATUS.

time_t update_time Last time the table was updated. Appears in the output of
SHOW TABLE STATUS.

key_range save_end_range A storage variable used in the handler::read_range_
first() member method.

key_range *end_range A storage variable used in a number of member methods
associated with reading records based on the value of a key
range.

KEY_PART_INFO *range_key_part A storage variable used in the read_range_first()
member method.

int key_compare_result_on_equal A storage variable used in theread_range_first() and
compare_key() member methods. Contains the result
compare_key() should return if the actual value of the
key turns out to be equal to the one it is being compared
against. Depending on the mode of traversing the key range,
the optimizer may find it more convenient to think that an
equal value is the same as a lesser or a greater value, and
make such a request in read_range_first(). For
example, when searching for a range key < const,
compare_key() returns a “greater than” result even for
key values that are equal to const. This simplifies the
boundary checks on the upper level.

bool eq_range A storage variable used in theread_range_first() and
read_range_next()member methods. Set to true if the
start and the end of the range have the same value.

Table 7-1. handler data members (continued)

Member definition Member description

122 | Chapter 7: The Storage Engine Interface

The methods of handler are documented in Table 7-2.

uint errkey Contains the number of the last key on which an error
occurred. Frequently the error is the attempt to create a
duplicate key value of a unique key.

uint sortkey The key number, if one exists, according to which the records
have been physically ordered. If such a key does not exist, set
to 255. Currently unused.

uint key_used_on_scan The key number, if one exists, that was last used to scan the
records. If no such key exists, set to MAX_KEY.

uint active_index The number of the currently selected key. If none is selected,
set to MAX_KEY.

uint ref_length The length of the value stored in the ref member.

uint block_size The size of the key block used for this table.

uint raid_type Associated with the RAID feature for MyISAM tables.
Removed in 5.1.

uint raid_chunks Associated with the RAID feature for MyISAM tables.
Removed in 5.1.

FT_INFO *ft_handler Full-text key operations descriptor. Currently applicable only
in MyISAM tables.

enum {NONE=0, INDEX, RND} inited Indicates whether the handler object has been initialized
to read a key (INDEX), to scan the table (RND), or not at all
(NONE). A call to ha_init_index() sets this value to
INDEX, while a call to ha_init_rnd() sets it to RND. The
cleanup and resetting the value to NONE is performed by
ha_end_index() and ha_end_rnd(), respectively.

bool auto_increment_column_changed Set byupdate_auto_increment() to indicate whether
the last operation resulted in a change to the autoincrement
column value.

bool implicit_emptied Set in by the MEMORY handler to indicate that the in-memory
table got emptied during server restart. This information is
needed for proper replication logging.

Table 7-2. handler methods

Method definition Method description

int ha_open
(const char *name, int mode, int test_if_
locked)

Opens the table specified by the name argument. This argu-
ment is the path to the .frm file containing the definition of the
table, with the .frm extension stripped off. For example, if the
table’s .frm file is ./test/t1.frm, the argument string is ./test/t1.
The remaining arguments are passed to open() and are
interpreted by the specific storage engine. Returns 0 on suc-
cess, or a nonzero error code on failure.

void update_auto_increment() Determines the autoincrement value to be inserted and
stores it in the autoincrement field descriptor.

Table 7-1. handler data members (continued)

Member definition Member description

The handler Class | 123

virtual void print_error
(int error, myf errflag)

Prints an error message to the error log. This method has a
generic implementation that deals with the most common
errors. If an unknown error code is encountered, the message
is looked up via get_error_message(). The error
argument is the error code. The errflag argument is
passed to my_error() from mysys/my_error.c and is
usually 0.

virtual bool get_error_message
(int error, String *buf)

Locates the storage-engine-specific error message in case it
is not known to print_error(). The error argument is
the error code. The buf argument is the address of the
String buffer that stores the resulting message. Returns
true if the error in the storage engine was temporary.
Returns false otherwise.

uint get_dup_key(int error) Returns the number of the key associated with the last dupli-
cate key error. If the argument contains an error code not
connected with a duplicate key error, returns (uint)-1.

void change_table_ptr(TABLE *table_arg) Sets thetablemember to the value supplied by the argument.

virtual double scan_time() Returns an estimated number of block read operations
needed to scan the entire table.

virtual double read_time
(uint index, uint ranges, ha_rows rows)

Returns an estimated number of block read operations it
would take to read rows number of rows from ranges
number of ranges using the key number index.

virtual const key_map *keys_to_use_for_
scanning()

Normally, the MySQL optimizer scans the table without using
keys, as the full scan of a plain datafile is faster than travers-
ing a B-tree index. However, some storage engines may
organize their data in such a way that it is beneficial to
traverse a key in the case of a full table scan. This method
returns a key map with bits set for the keys that can be used
for scanning the table.

virtual bool has_transactions() Returns true if the storage engine supports transactions.
The default implementation returns false. Not virtual since
5.1.

virtual uint extra_rec_buf_length() openfrm() from sql/table.cc allocates a temporary record
buffer to store the current record in the table descriptor. The
size of the buffer is the logical length of the record, plus pos-
sibly some extra reserved length for the purposes specific to
the storage engine. This method returns the value of this
extra length.

virtual ha_rows estimate_rows_upper_bound() Returns the maximum number of records that could be
examined when scanning the table.

virtual const char *index_type
(uint key_number)

Returns a pointer to a textual description of the index speci-
fied by the argument.

int ha_index_init(uint idx) Initializes the storage engine to perform operations on the
key specified by the argument. Returns 0 on success, and a
nonzero value on failure.

Table 7-2. handler methods (continued)

Method definition Method description

124 | Chapter 7: The Storage Engine Interface

int ha_index_end() Performs cleanup after the key operations in the storage
engine. Must be called after ha_index_init(). Returns
0 on success, and a nonzero value on failure.

int ha_rnd_init(bool scan) Initializes the storage engine for position-based record reads.
The argument specifies whether a full table scan is going to
be performed. Returns 0 on success, and a nonzero value on
failure.

int ha_rnd_end() Cleans up after position-based reads. Must be called after
ha_rnd_init(). Returns 0 on success, and a nonzero
value on failure.

int ha_index_or_rnd_end() Calls either ha_index_end() or ha_rnd_end()
depending on which initialization took place previously.
Returns 0 on success, and a nonzero value on failure.

uint get_index(void) const Returns the number of the currently selected index.

virtual int open(const char *name,
int mode, uint test_if_locked)=0

Does the real work to open the table (as opposed to ha_
open(), which is just a wrapper). The name argument is
the path to the .frm file, with the extension stripped off. The
remaining arguments contain flags that specify what to ini-
tialize and what to do if the table files are locked. The flags
are mostly meaningful to the MyISAM storage engine.
Returns 0 on success, or a nonzero error code on failure. Note
that this method is pure virtual and must be implemented in
a subclass.

virtual int close(void)=0 Closes the table, performing the necessary cleanup. Must be
called afteropen(). Returns 0 on success, or a nonzero error
code on failure. Note that this method is pure virtual, and
must be implemented in a subclass.

virtual int write_row(byte * buf) Inserts into the table the record pointed to by the argument.
This call is the bottom of the execution stack shared by all
storage engines when handling an INSERT query. Note that
the method has a default implementation returning HA_
ERR_WRONG_COMMAND. Thus, failure to implement it
results in all INSERT queries returning an error.

virtual int update_row(const byte *
old_data, byte * new_data)

Updates the record pointed to by old_data to have the
contents pointed to by new_data. This call is the bottom of
the execution stack shared by all storage engines when han-
dling an UPDATE query. Note that the method has a default
implementation that returns HA_ERR_WRONG_COMMAND.
Thus, failure to implement it results in all UPDATE queries
returning an error.

virtual int delete_row(const byte * buf) Deletes from the table the record pointed to by the argu-
ment. This call is the bottom of the execution stack shared by
all storage engines when handling a DELETE query. The
method has a default implementation that returns HA_ERR_
WRONG_COMMAND.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 125

virtual int index_read(byte * buf, const
byte * key,uint key_len, enum ha_rkey_
function find_flag)

Positions the key cursor according to the values of key and
key_len on the first key, and reads the record into buf if a
match exists. The matching is performed according to the
lookup method specified byfind_flag. The operation is per-
formed with the currently active index. enum ha_rkey_
function is defined in include/my_base.h. Returns 0 on suc-
cess, or a nonzero error code on failure. The method has a
default implementation that returnsHA_ERR_WRONG_
COMMAND.

virtual int index_read_idx(byte * buf,
uint index, const byte * key,uint key_len,
enum ha_rkey_function find_flag)

Same as index_read() except that the key specified by
the index argument is made active first.

virtual int index_next(byte * buf) Reads the next record from the active index into the buffer
specified by the argument, and advances the active key cur-
sor. Returns 0 on success, and a nonzero error code on failure.
The method has a default implementation that returns HA_
ERR_WRONG_COMMAND.

virtual int index_prev(byte * buf) Reads the previous record from the active index into the
buffer specified by the argument, and moves back the active
key cursor. Returns 0 on success, and a nonzero error code on
failure. The method has a default implementation that
returns HA_ERR_WRONG_COMMAND.

virtual int index_first(byte * buf) Reads the first record from the active index into the buffer
specified by the argument, and positions the active key cur-
sor immediately after it. Returns 0 on success, and a nonzero
error code on failure. The method has a default implementa-
tion that returns HA_ERR_WRONG_COMMAND.

virtual int index_last(byte * buf) Reads the last record from the active index into the buffer
specified by the argument, and positions the active key cur-
sor immediately before it. Returns 0 on success, and a non-
zero error code on failure. The method has a default
implementation that returns HA_ERR_WRONG_COMMAND.

virtual int index_next_same
(byte *buf, const byte *key, uint keylen)

Starting from the currently active record, reads the next
record that has the same key value as the previously read
record into the buffer pointed to by buf. Because some stor-
age engines do not store the value of the last read key, the
key and keylen arguments are used to remind them. On
success, the active key cursor is advanced, and 0 is returned.
On failure, a nonzero error code is returned. The method has
a default implementation that returns HA_ERR_WRONG_
COMMAND.

virtual int index_read_last
(byte * buf, const byte * key, uint key_len)

Reads into buf the record found through the last key value
matching the values ofkey andkey_len, and positions the
cursor immediately before that record. On success, returns 0.
On failure, a nonzero error code is returned. The method has
a default implementation that returns HA_ERR_WRONG_
COMMAND.

Table 7-2. handler methods (continued)

Method definition Method description

126 | Chapter 7: The Storage Engine Interface

virtual int read_range_first
(const key_range *start_key,
const key_range *end_key,
bool eq_range, bool sorted)

Reads the first record from the range specified by the
start_key and end_key arguments into the table->
record[0] buffer. The range boundaries are saved to be
used by read_range_next(). The eq_range argu-
ment indicates whether the start and the end of the range
have the same value. This information can certainly be
obtained by examining start_key and end_key, but the
caller has often done it already, and some CPU cycles can be
saved if this information is passed down. The sorted argu-
ment tells whether the caller expects to receive the records in
the key order. The key_range type is defined in include/
my_base.h. The method returns 0 on success, and a nonzero
error code on failure. The method has a default implementa-
tion that calls index_first() to read the first value if
start_key is 0, or index_read() otherwise to read the
first matching key value for the start of the range.
compare_key() is used to test whether the read key is
still in the range. Currently, only the NDB cluster engine (see
sql/ha_ndbcluster.cc) reimplements this method.

virtual int read_range_next() Reads the next record from the current range into the
table->record[0] buffer. Returns 0 on success, and a
non-zero error code on failure. In the method’s default
implementation, if eq_range (remembered from the
read_range_first() call) is set to true, index_
next_same() is called to position the index cursor on the
next key value that is equal to the previous one. Otherwise,
index_next() is called to move to the next key value, fol-
lowed by a call to compare_key() to check whether that
value is within the range. Currently, only the NDB cluster
engine (see sql/ha_ndbcluster.cc) reimplements this
method.

int compare_key(key_range *range) Compares the key of the current record (in table->
record[0]) with the value of the key range limit specified
by the argument. Returns 0 if the values are the same or the
value of range is 0; returns -1 if the current record key is less
than the range limit; and returns 1 if the current record key is
greater than the range limit.

virtual int ft_init() Re-initializes the storage engine for full-text key operations.
Can be called when MySQL needs to repeat full-text search
many times; e.g., in a join. Currently meaningful only in
MyISAM. Returns 0 on success, and a nonzero error code oth-
erwise. The default implementation returns HA_ERR_
WRONG_COMMAND.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 127

virtual FT_INFO *ft_init_ext
(uint flags,uint inx, const byte *key,
uint keylen)

Initializes the full-text engine for a search. Currently mean-
ingful only in MyISAM. The flags argument specifies the
search mode, the inx argument is the number of the index,
and the key and keylen arguments supply the key to
search. Starting in 5.0, the last two arguments have been
replaced with String*. Returns a pointer to a full-text
search descriptor on success, and NULL on error. The default
implementation simply returns NULL.

virtual int ft_read(byte *buf) Reads the next record on the currently active full-text key
into the buffer pointed to by the argument. Currently mean-
ingful only in MyISAM. Returns 0 on success, and a nonzero
error code on error. The default implementation returns HA_
ERR_WRONG_COMMAND.

virtual int rnd_next(byte *buf)=0 Reads the next record during a sequential table scan into the
buffer pointed to by buf, advancing the sequential scan cur-
sor. Returns 0 on success, and a nonzero error code on error.
Note that the method is pure virtual and must be imple-
mented in the subclass.

virtual int rnd_pos
(byte * buf, byte *pos)=0

Reads a record specified by pos into buf. The interpretation
of pos is up to the storage engine. MyISAM uses the datafile
offset of the record. InnoDB uses the primary key value.
MEMORY uses the memory address of the record. Returns 0
on success, and a nonzero error code on failure. Note that the
method is pure virtual and must be implemented in the sub-
class.

virtual int read_first_row
(byte *buf, uint primary_key)

Retrieves one arbitrarily chosen record from the table and
places it into the buffer pointed to by the buf argument. The
primary_key argument affects the method by which the
record is chosen. Currently, the default implementation uses
two methods for choosing this record. The first one scans the
table and returns the first record not marked as deleted,
whereas the other method picks the first record in the key
with the number of the primary_key argument. The first
method is used if there are fewer than 10 records marked as
deleted, or if theprimary_key argument is greater than or
equal to MAX_KEY. Otherwise the second method is chosen.
No storage engine reimplements this method at this point.
Returns 0 on success, and a nonzero error code on failure.

virtual int restart_rnd_next
(byte *buf, byte *pos)

Currently meaningful only in MyISAM, where this method is
an alias for rnd_pos(). The default implementation
returns HA_ERR_WRONG_COMMAND. At this time, the
method is called only once, by the code that removes dupli-
cates from the result set when processing SELECT
DISTINCT on a temporary table. It is possible that this
method will be renamed or eliminated in the future.

Table 7-2. handler methods (continued)

Method definition Method description

128 | Chapter 7: The Storage Engine Interface

virtual int rnd_same(byte *buf, uint inx) Rereads the current record into buf, possibly using the key
number idx if its value is greater than or equal to 0. Returns
0 on success and a nonzero error code on error. Currently this
method is never called, and no storage engine implements it.
The default implementation returns HA_ERR_WRONG_
COMMAND. However, the MEMORY and MyISAM engines
have the hooks to provide the implementations of this
method in heap/hp_rsame.c and myisam/mi_rsame.c.

virtual ha_rows records_in_range(uint inx,
key_range *min_key, key_range *max_key)

Returns an estimated number of records matching the key
values limited by min_key and max_key in the key num-
ber inx. The default implementation returns 10. The worst
thing that can happen if a bogus value is returned is that the
optimizer will prefer a less optimal key or choose not to use a
key at all.

virtual void position(const byte
*record)=0

Stores the unique reference value to the current record in the
refmember. For MyISAM tables, this value is the position of
the record in the datafile; thus the name of the method.
Some storage engines may not remember the unique refer-
ence value of the last record, and may need to look at the
actual record, which is supplied by the argument. Note that
the method is pure virtual and must be implemented in the
subclass.

virtual void info(uint flag)=0 Updates the values of various statistical variables of this object
based on the value of the argument. Note that the method is
pure virtual and must be implemented in the subclass.

virtual int extra
(enum ha_extra_function operation)

Gives hints to the storage engines to use some special opti-
mizations. For example, if the argument is HA_EXTRA_
KEYREAD, read operations on a key may retrieve only those
parts of the record that are included in the key. Returns 0 on
success and a nonzero error code otherwise. The default
implementation just returns 0, as hints are safe to ignore.

virtual int extra_opt(enum ha_extra_
function operation, ulong cache_size)

Similar to extra() except that it allows the caller to pass an
argument to the requested operation (cache_size). Mainly
used for controlling cache sizes for various types of I/O.

virtual int reset() Wrapper around handler:extra(HA_EXTRA_RESET).
Frees the resources allocated by earlier extra() calls, and
resets the operational modes of the storage engine to the
defaults.

virtual int external_lock
(THD *thd, int lock_type)=0

 MySQL calls this method once at the beginning of every state-
ment for every table used in the statement. MyISAM just locks
the key file via the operating system if the external locking
option is enabled, thus the historical name of the option. Trans-
actional storage engines use it as a hook for starting a transac-
tion and performing other initializations if necessary. Returns 0
on success, and a nonzero error code on error. Note that the
method is pure virtual and must be implemented in a subclass.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 129

virtual void unlock_row() Called during UPDATE or DELETE for each row that did not
match the WHERE clause to remove unnecessary row locks.
Used by InnoDB to clear the locks on the rows read in the
semiconsistent read mode (read last committed version if the
current version is locked by another transaction).

virtual int start_stmt(THD *thd) Called at the beginning of a transaction initiated via LOCK
TABLES, giving a transactional storage engine a chance to
register the start of a transaction. Returns 0 on success, and a
nonzero error code on error. The default implementation
does nothing and reports success.

virtual int delete_all_rows() Deletes all rows at once from the table. This is an optional
optimization. If not supported, the table is cleared via multi-
ple calls to delete_row(). Returns 0 on success, and a
nonzero error code on error. The default implementation
returns HA_ERR_WRONG_COMMAND.

virtual longlong get_auto_increment() Returns the next value of the autoincrement key. Interest-
ingly enough, although this method has a fairly complex
default implementation, most existing storage engines re-
implement it.

virtual int check
(THD* thd, HA_CHECK_OPT* check_opt)

Checks the table for structural errors. Called when theCHECK
TABLE command is issued. The thd argument is the current
thread descriptor. The check_opt argument points to a
structure describing the options for the operation. Returns 0
on success and a nonzero error code on failure. The default
implementation returns HA_ADMIN_NOT_IMPLEMENTED.

virtual int restore
(THD* thd, HA_CHECK_OPT* check_opt)

Recreates the index file from the .frm and datafiles. Currently
implemented only in MyISAM. Returns 0 on success and a
nonzero error code on failure. The default implementation
returns HA_ADMIN_NOT_IMPLEMENTED. This method will
be removed in 5.2.

virtual int repair
(THD* thd, HA_CHECK_OPT* check_opt)

Repairs a corrupted table. Called when REPAIR TABLE is
issued. Returns 0 on success and a nonzero error code on fail-
ure. The default implementation returns HA_ADMIN_NOT_
IMPLEMENTED.

virtual int optimize
(THD* thd, HA_CHECK_OPT* check_opt)

Restructures the table to be in the most optimal form for a
typical query. Called when OPTIMIZE TABLE is issued.
Returns 0 on success and a nonzero error code on failure. The
default implementation returns HA_ADMIN_NOT_
IMPLEMENTED.

virtual int analyze
(THD* thd, HA_CHECK_OPT* check_opt)

Updates the index statistics used by the optimizer. Called
when ANALYZE TABLE is issued. Returns 0 on success and a
nonzero error code on failure. The default implementation
returns HA_ADMIN_NOT_IMPLEMENTED.

Table 7-2. handler methods (continued)

Method definition Method description

130 | Chapter 7: The Storage Engine Interface

virtual int assign_to_keycache
(THD* thd, HA_CHECK_OPT* check_opt)

Assigns the keys of this table to the key cache specified inside
the check_opt structure. Called when CACHE INDEX
command is issued. Returns 0 on success and a nonzero error
code on failure. The default implementation returns HA_
ADMIN_NOT_IMPLEMENTED.

virtual int preload_keys
(THD* thd, HA_CHECK_OPT* check_opt)

Loads the keys of this table into the cache specified inside the
check_opt structure. Called when CACHE INDEX is
issued. Returns 0 on success and a nonzero error code on fail-
ure. The default implementation returns HA_ADMIN_NOT_
IMPLEMENTED.

virtual bool check_and_repair(THD *thd) Checks the table for corruption and repairs it if necessary.
Returns 0 on success and 1 on error. The default implementa-
tion just returns 1.

virtual int dump(THD* thd, int fd = –1) Writes the table data in the format particular to the storage
engine to the file handle specified by fd. If fd is less than 0,
the data is written to the network connection associated with
thd. The dump format must be understood by net_read_
dump(). The method is used for LOAD DATA FROM
MASTER. Currently implemented only in MyISAM. Returns 0
on success, and a nonzero error code on error. The default
implementation returns HA_ERR_WRONG_COMMAND. This
method will be removed in 5.2.

virtual int disable_indexes(uint mode) Disables the use of keys in the table. Called when DISABLE
KEYS is issued. Often used before a large sequence of
updates while holding a lock on the table. The default imple-
mentation returns HA_ERR_WRONG_COMMAND.

virtual int enable_indexes(uint mode) Re-enables the use of keys in the table. Called when ENABLE
KEYS command is issued. The default implementation
returns HA_ERR_WRONG_COMMAND.

virtual int indexes_are_disabled(void) Returns 1 if indexes in this table have been disabled, and 0
otherwise.

virtual void start_bulk_insert
(ha_rows rows)

Instructs the storage engine to enable the bulk insert optimi-
zation. MySQL calls it before inserting a large number of rows
into the table. MyISAM optimizes bulk inserts by caching key
values in memory and inserting them into the B-tree index in
key order. The default implementation does nothing.

virtual int end_bulk_insert() Called at the end of a bulk insert batch. Returns 0 on success,
and a nonzero error code otherwise. The default implemen-
tation just returns 0.

virtual int discard_or_import_
tablespace(my_bool discard)

A method used by InnoDB to perform operations on a table
space allocated for this table. Discarding prepares the table
space for an import from the backup. Importing restores the
data from the backup after the table space file to be restored
has been copied into its designated location. Called when
executing ALTER TABLE ... DISCARD TABLESPACE or
ALTER TABLE ... IMPORT TABLESPACE. Returns 0 on
success, and a nonzero error code on error. The default imple-
mentation returns HA_ERR_WRONG_COMMAND.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 131

virtual int net_read_dump(NET* net) Reads the table data from the network connection specified
by the argument and stores it in such a way that a call to
repair() is sufficient to bring the table into a consistent
state. Returns 0 on success, and a nonzero error code on
error. The default implementation returns HA_ERR_
WRONG_COMMAND. Will be removed in 5.2.

virtual char *update_table_comment
(const char * comment)

Used in SHOW TABLES to display some extra information
about the table in theComment column. Returns a pointer to
the string containing the updated comment value. Note that
if it returns a value different from the argument, the caller
assumes the new pointer was allocated withmy_malloc(),
and will free it withmy_free() after use. InnoDB is the only
engine that provides its own implementation. The default
implementation just returns the value of the argument.

virtual void append_create_info
(String *packet)

Appends extra information specific to the storage engine to
the String object specified by the argument. Used for gen-
erating the output of SHOW CREATE TABLE. The default
implementation does nothing.

virtual char* get_foreign_key_create_info() Returns a pointer to the string containing the part of the
CREATE TABLE statement that creates the foreign keys.
Used for generating the output of SHOW CREATE TABLE.
The default implementation returns 0.

virtual uint referenced_by_foreign_key() Returns 1 if the table associated with this object is referenced
by some foreign key, and 0 otherwise. The default imple-
mentation returns 0.

virtual void init_table_handle_for_
HANDLER()

Prepares the table for subsequent HANLDER commands.
HANDLER commands provide a low-level interface to some
storage engine operations through SQL. The default imple-
mentation does nothing.

virtual void free_foreign_key_create_
info(char* str)

Frees the pointer returned by get_foreign_key_
create_info() if needed. The default implementation
does nothing.

virtual const char *table_type() const =0 Returns a pointer to the string containing the name of the
storage engine. Note that this method is pure virtual and
must be implemented in the subclass.

virtual const char **bas_ext() const =0 Returns an array of character string pointers to file extensions
of the files in which this storage engine stores the data and
keys. The last element of the array is 0. Note that this method
is pure virtual and must be implemented in the subclass.

virtual ulong table_flags(void) const =0 Returns a bit mask of capabilities of this storage engine. The
capabilities are defined in sql/handler.h. Note that this method
is pure virtual and must be implemented in the subclass.

virtual ulong index_flags
(uint idx, uint part, bool all_parts)
const =0

Returns a bit mask of capabilities of the key or its part
specified by the arguments. The capabilities are defined in
sql/handler.h. Note that this method is pure virtual and
must be implemented in the subclass.

Table 7-2. handler methods (continued)

Method definition Method description

132 | Chapter 7: The Storage Engine Interface

virtual ulong index_ddl_flags
(KEY *wanted_index) const

Returns a bit mask of capabilities for the given key with
respect to creating or dropping that key. The default imple-
mentation returns DDL_SUPPORT, which means that a stor-
age engine supports the index of a given definition, but
cannot add it to the existing table (MySQL will create a new
table with this index and copy the data over).

virtual int add_index(TABLE *table_arg,
KEY *key_info, uint num_of_keys)

Adds the collection of keys to the table. The second argument
is the start of the key definition array, while the third is its
size. Returns 0 on success, and a nonzero error code on error.
The default implementation returns HA_ERR_WRONG_
COMMAND.

virtual int drop_index(TABLE *table_arg,
uint *key_num, uint num_of_keys)

Drops the keys from the table specified by the arguments.
Returns 0 on success, and a nonzero error code on error. The
default implementation returns HA_ERR_WRONG_
COMMAND.

uint max_record_length() const Returns the maximum possible record length. The limit is
either what the storage engine itself supports, or the limit
imposed by the core code, whichever is less.

uint max_keys() const Returns the maximum possible number of keys per table. The
limit is either what the storage engine itself supports, or the
limit imposed by the core code, whichever is less.

uint max_key_parts() const Returns the maximum possible number of columns or col-
umn prefixes that a key can contain. The limit is either what
the storage engine itself supports, or the limit imposed by
the core code, whichever is less.

uint max_key_length() const Returns the maximum possible length of a key. The limit is
either what the storage engine itself supports, or the limit
imposed by the core code, whichever is less.

uint max_key_part_length() const Returns the maximum possible length of a key part. The limit
is either what the storage engine itself supports, or the limit
imposed by the core code, whichever is less.

virtual uint max_supported_record_length()
const

Returns the limit on the length of a record imposed by this
storage engine.

virtual uint max_supported_keys() const Returns the limit on the number of keys imposed by this stor-
age engine.

virtual uint max_supported_key_parts()
const

Returns the limit on the number of key parts imposed by this
storage engine.

virtual uint max_supported_key_length()
const

Returns the limit on the key length imposed by this storage
engine.

virtual uint max_supported_key_part_
length() const

Returns the limit on the key part length imposed by this stor-
age engine.

virtual uint min_record_length
(uint options) const

Returns the lower limit on the length of a record imposed by
this storage engine. The default implementation returns 1.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 133

virtual bool low_byte_first() const Returns 1 if the native byte order of the records for this stor-
age engine is little-endian; otherwise 0. The default imple-
mentation returns 1.

virtual uint checksum() const Returns a live checksum for this table. The default implemen-
tation returns 0.

virtual bool is_crashed() const Returns 1 if the table has been marked as crashed. This can
happen if CHECK TABLE or just a regular read/write opera-
tion discovers a problem. The table then effectively gets
taken offline by being marked as crashed. A successful run of
REPAIR TABLE removes the mark.

virtual bool auto_repair() const Returns 1 if the storage engine supports autorepairing cor-
rupted tables. Currently only MyISAM has this capability.

virtual int rename_table
(const char *from, const char *to)

Moves the table specified by from to the path specified by
to. The arguments are paths to the table definition files with
the .frm extension removed. The default implementation
iterates through all the possible extensions returned by
bas_ext() and renames the matching files. Returns 0 on
success, and a nonzero error code on error.

virtual int delete_table(const char *name) Deletes the table specified by name. The argument is the
path to the table definition file with the .frm extension
removed. The default implementation iterates through all
the possible extensions returned by bas_ext() and
deletes the matching files. Returns 0 on success, and a non-
zero error code on error.

virtual int create(const char *name,
TABLE *form, HA_CREATE_INFO *info)=0

Creates a table specified by name using the table descriptor
form and the creation information descriptor info.
Returns 0 on success, and a nonzero error code on error.
Note that this method is pure virtual and must be imple-
mented in the subclass.

virtual uint lock_count(void) const Returns the number of regular lock descriptor blocks required
to store the lock descriptor for this table. In most situations
only one lock descriptor block is needed, with MERGE tables
being the exception. A MERGE table needs one block per
component table. The default implementation returns 1.

virtual THR_LOCK_DATA **store_lock
(THD *thd, THR_LOCK_DATA **to, enum
thr_lock_type lock_type)=0

Stores the location of the lock descriptor associated with this
table at the address indicated by to. The other arguments
supply the values of the current thread descriptor and the
type of the lock in case the storage engine wants to know
these values for its internal purposes. The main purpose of
this method is to allow the storage engine to modify the lock
before it gets stored. Row-level locking storage engines use it
to prevent the table lock manager from putting an excessive
lock on the table. Returns the value of to on success, and 0
on failure. Note that this method is pure virtual, and must be
implemented in the subclass.

Table 7-2. handler methods (continued)

Method definition Method description

134 | Chapter 7: The Storage Engine Interface

handlerton
Up until version 4.1, subclassing the handler class was the only method for a storage
engine to connect to and interact with the core code. If the optimizer needed to do
something with the storage engine, it would call a virtual method of handler for the
current table. However, as the process of integrating various storage engines moved
forward, it became apparent that interfacing through the handler methods alone was
inadequate. Thus, a concept of a handlerton was created.

A handlerton is a C structure consisting mostly of callback function pointers. It is
defined in sql/handler.h. The callbacks are invoked to handle certain events involv-
ing the given storage engine. For example, when a transaction is committed, a save
point takes place, or a connection is closed, some special action may be required, in
which case the handlerton will have the pointer to the appropriate callback.
Table 7-3 documents the members of the handlerton structure.

virtual uint8 table_cache_type() Returns the bit mask of options relevant for query caching. The
default implementation returns HA_CACHE_TBL_
NONTRANSACT, which permits caching regardless of whether
there is a transaction in progress. ReturningHA_CACHE_TBL_
TRANSACT permits caching as long as the table is not involved
in any active transactions. HA_CACHE_TBL_ASKTRANSACT
means that query cache will ask the storage engine about every
table, whether it can be cached. The storage engine may then
use its transaction visibility rules to decide.

virtual const COND *cond_push
(const COND *cond)

Used by storage engines capable of filtering out records that
do not match a portion of the WHERE clause. Originally cre-
ated for the NDB storage engine, which may store the records
on remote nodes and can benefit from processing portions of
the WHERE clause internally. The requested part of the
WHERE clause represented by the argument is pushed onto
the expression stack of this storage engine instance. Returns
a new expression tree that the caller would have to evaluate
to decide whether the record indeed matched the WHERE
clause. If the filtering is fully completed inside the storage
engine, returns NULL. The default implementation immedi-
ately returns the argument without doing anything else.

virtual void cond_pop() Removes the top condition off the top of the storage engine
condition stack. The default implementation does nothing.

virtual void try_semi_consistent_read
(bool flag)

Used for communicating to the storage engine that it is
acceptable to read the last committed version of a record if
the current version is locked by another transaction. This is
used by InnoDB to avoid unnecessary locks during UPDATE
and DELETE queries.

virtual bool was_semi_consistent_read() Returns true when the storage engine tells the optimizer
not to update the last read record because it did not read the
current version.

Table 7-2. handler methods (continued)

Method definition Method description

The handler Class | 135

Table 7-3. Members of the handlerton structure

Definition Descripton

const int interface_version Handlerton interface version number, which should be set to
MYSQL_HANDLERTON_INTERFACE_VERSION.

const char *name The name of the storage engine.

SHOW_COMP_OPTION state Needed for the proper output of the Support column in the
output ofSHOWSTORAGEENGINES. Should normally be set
to SHOW_OPTION_YES.

const char *comment The value of the Comment column in the output of SHOW
STORAGE ENGINES.

enum legacy_db_type db_type Used in the .frm file to determine the storage engine type for
the associated table.

bool (*init)() The function to initialize the storage engine.

uint slot For internal use by MySQL. Should be set to 0 initially.

uint savepoint_offset Contains the offset to the savepoint storage area. Should be
set initially to the size of the savepoint structure.

int (*close_connection)(THD *thd) The function to perform storage-engine-specific cleanup
when a connection is closed.

int (*savepoint_set)(THD *thd, void *sv) The function to handle a savepoint.

int (*savepoint_rollback)
(THD *thd, void *sv)

The function to handle ROLLBACK TO SAVEPOINT.

int (*savepoint_release)
(THD *thd, void *sv)

The function to handle RELEASE SAVEPOINT.

int (*commit)(THD *thd, bool all) The function to handle COMMIT.

int (*rollback)(THD *thd, bool all) The function to handle ROLLBACK.

int (*prepare)(THD *thd, bool all) The function to handle XA PREPARE.

int (*recover)(XID *xid_list, uint len) The function to handle XA RECOVER.

int (*commit_by_xid)(XID *xid) The function to handle XA COMMIT.

int (*rollback_by_xid)(XID *xid) The function to handle XA ROLLBACK.

void *(*create_cursor_read_view)() The function to open a cursor.

void (*set_cursor_read_view)(void *) The function to fetch from a cursor.

void (*close_cursor_read_view)(void *) The function to close a cursor.

handler *(*create)(TABLE_SHARE *table) The function to create a table.

void (*drop_database)(char* path) The function to drop a database.

int (*panic)(enum ha_panic_function flag) The function to handle an emergency shutdown.

int (*start_consistent_snapshot)(THD *thd) The function to handle START TRANSACTION WITH
CONSISTENT SNAPSHOT.

bool (*flush_logs)() The function to handle FLUSH LOGS.

bool (*show_status)(THD *thd, stat_print_
fn *print, enum ha_stat_type stat)

The function to handle SHOW ENGINE STATUS.

uint (*partition_flags)() The function that returns a set of flags indicating the capabil-
ities of the storage engine to deal with table data partitioned
across different filesystems.

136 | Chapter 7: The Storage Engine Interface

Adding a Custom Storage Engine to MySQL
There are a number of reasons for adding a custom storage engine to MySQL:

• You have a legacy, proprietary database and want to give it an SQL/ODBC
interface.

• You have some very specific requirements in the areas of performance or data
security that are not being met by any of the existing storage engines.

• You have created a low-level data storage and retrieval module that you believe
will rule the world, but you do not want to (or are not able to) write an SQL
optimizer to go with it.

• Your proprietary SQL optimizer does not meet your needs, and you want a bet-
ter one for your storage engine.

• You just want to learn more about MySQL internals.

Let us illustrate with an example. Our storage engine will provide a read-only SQL
interface to comma-separated value (CSV) text files. In version 4.1 and earlier, stor-
age engine integration requires a lot of source modifications. It has become much
cleaner in version 5.1. If you are writing a custom storage engine, depending on your
needs, you may choose to lean toward a more mature code base (4.1), or go with
what (at the time of this writing) is the bleeding edge (5.1). I will provide instruc-
tions for versions 4.1 and 5.1. For the sake of brevity, I will not provide instructions

uint (*alter_table_flags)(uint flags) The function that returns a set of flags indicating the differ-
ent capabilities of the storage engine in the ALTER TABLE
operation.

int (*alter_tablespace)
(THD *thd, st_alter_tablespace *ts_info)

The function to handle ALTER TABLESPACE.

int (*fill_files_table)(THD *thd,
struct st_table_list *tables,
class Item *cond)

The function to supply the data for SELECT * FROM
information_schema.files.

uint32 flags Bit mask of storage engine capabilities.

int (*binlog_func)(THD *thd, enum_binlog_
func fn, void *arg)

The function to handle replication log operations.

void (*binlog_log_query)(THD *thd,
enum_binlog_command binlog_command,
const char *query, uint query_length,
const char *db, const char *table_name)

The function to be called every time a query is written to the
replication log.

int (*release_temporary_latches)(THD *thd) A special callback created for InnoDB to avoid a deadlock
when sending records to a client.

Table 7-3. Members of the handlerton structure (continued)

Definition Descripton

Adding a Custom Storage Engine to MySQL | 137

for other versions of MySQL. Those who need to integrate their storage engine into
other versions are advised to search (case-insensitive) for the string “blackhole” in
the source tree of the given version, and follow the patterns of the blackhole storage
engine.

Integration Instructions for Version 4.1
The instructions in this section were created using the source of MySQL 4.1.11, but
they should work fine on later 4.1 versions. We assume that you already have down-
loaded and unpacked the MySQL source distribution.

1. Copy the ha_csv_4_1.cc and ha_csv4_1.h files from the examples on the book’s
web site into the sql/ directory. Name them ha_csv.cc and ha_csv.h, respectively.
If you do not have Internet access, you can copy them from Examples 7-1 and
7-2. They provide the definition and the implementation of our storage engine
class.

2. In sql/Makefile.am, add ha_csv.h to the noinst_HEADERS variable and ha_csv.cc to
mysqld_SOURCES. This is necessary to include those files in the compilation frame-
work.

3. To update the Makefiles, run the following set of commands at the top of the
MySQL source tree:

$ autoconf
$ automake
$./configure --prefix=/usr

4. Now you need to make a few changes to the core code to make it aware of the
presence of a new storage engine. Add the following line to other include direc-
tives at the top of sql/handler.cc:

#include "ha_csv.h"

5. Still in sql/handler.cc, extend the array sys_table_types[] with the following
member (any position except the very last element in the array is fine):

{"OREILLY_CSV", &have_yes,
 "Example CSV Engine - Understanding MySQL Internals",
 DB_TYPE_OREILLY_CSV}

6. In sql/handler.cc, extend the switch statement in get_new_handler() with the fol-
lowing code:

case DB_TYPE_OREILLY_CSV:
 return new ha_csv(table);

7. In sql/handler.h, add a new member DB_TYPE_OREILLY_CSV to the enum db_type.
Any position is fine except the last one.

8. Run make in the top directory. When the build is finished, you will have a binary
in sql/mysqld that has support for your new storage engine.

138 | Chapter 7: The Storage Engine Interface

Example 7-1. The ha_csv.h storage engine header file for MySQL 4.1

/* Tell GCC this is a header file */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface
#endif

/* The CSV lines could be big. Read them in blocks of 512. */
#define CSV_READ_BLOCK_SIZE 512

/*
 Following the tradition of other storage engines, we put all of the
 low-level information under a separate structure.
 */
struct CSV_INFO
{
 char fname[FN_REFLEN+1];
 int fd;
} ;

/* Now define the handler class. */
class ha_csv: public handler
{
protected:
 /* Low-level storage engine data. */
 CSV_INFO* file;

 /* Lock structures for the table lock manager. */
 THR_LOCK_DATA lock;
 THR_LOCK thr_lock;

 /* Table scan cursor.*/
 my_off_t pos;

 /* Buffer for reading CSV line blocks. */
 char read_buf[CSV_READ_BLOCK_SIZE];

 /* Buffer for parsing the field values. */
 String field_buf;

 /* See the comment in the implementation file. */
 int fetch_line(byte* buf);

 /* Initializes the storage engine object for a sequential scan. */
 int rnd_init(bool scan)
 {
 pos = 0;
 records = 0;
 return 0;
 }
public:
 /* Constructor. */
 ha_csv(TABLE* table): handler(table), file(0) {}

Adding a Custom Storage Engine to MySQL | 139

 /* Destructor. */
 ~ha_csv() {}

 /* See the comments in the implementation file for the methods below. */
 int open(const char *name, int mode, uint test_if_locked);
 int close(void);
 int rnd_next(byte *buf);
 int rnd_pos(byte * buf, byte *pos);
 void position(const byte *record);
 void info(uint flags);
 int external_lock(THD *thd, int lock_type);
 const char **bas_ext() const;
 ulong table_flags(void) const;
 ulong index_flags(uint idx, uint part, bool all_parts) const;
 int create(const char *name, TABLE *form, HA_CREATE_INFO *info);
 THR_LOCK_DATA **store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type);

 /*
 Returns the storage engine type string used in the output of
 SHOW TABLE STATUS
 */
 const char *table_type() const { return "OREILLY_CSV"; }

};

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1

/* Tell GCC we are in the implementation source file. */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif

/* Main include file in the sql/ directory. */
#include "mysql_priv.h"

/* Our own header file for this storage engine. */
#include "ha_csv.h"

/* Used by ha_csv::bas_ext(). */
static const char* csv_ext[]= {".csv",0};

/* Called when the table is opened. */
int ha_csv::open(const char *name, int mode, uint test_if_locked)
{
 /* Initialize the lock structures used by the lock manager. */
 thr_lock_init(&thr_lock);
 thr_lock_data_init(&thr_lock,&lock,NULL);

 /* Allocate memory for the datafile descriptor. */
 file= (CSV_INFO*)my_malloc(sizeof(CSV_INFO),MYF(MY_WME));

Example 7-1. The ha_csv.h storage engine header file for MySQL 4.1 (continued)

140 | Chapter 7: The Storage Engine Interface

 if (!file)
 return 1;

 /* Translate the name of the name into the datafile name. */
 fn_format(file->fname, name, "", ".csv",
 MY_REPLACE_EXT|MY_UNPACK_FILENAME);

 /*
 Open the file, and save the file handle id in the datafile
 descriptor structure.
 */
 if ((file->fd = my_open(file->fname,mode,MYF(0))) < 0)
 {
 int error = my_errno;
 close();
 return error;
 }

 /* Read operations start from the beginning of the file. */
 pos = 0;
 return 0;
}

/* Called when the table is closed. */
int ha_csv::close(void)
{
 /*
 Clean up the lock structures, close the file handle, and
 deallocate the datafile descriptor memory.
 */
 thr_lock_delete(&thr_lock);
 if (file)
 {
 if (file->fd >= 0)
 my_close(file->fd, MYF(0));
 my_free((gptr)file,MYF(0));
 file = 0;
 }
 return 0;
}

/*
 Read the line from the current position into the
 caller-provided record buffer.
 */
int ha_csv::fetch_line(byte* buf)
{
 /*
 Keep track of the current offset in the file as we read
 portions of the line into a buffer.
 Start at the current read cursor position.
 */

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

Adding a Custom Storage Engine to MySQL | 141

 my_off_t cur_pos = pos;

 /*
 We will use this to iterate through the array of
 table field pointers to store the parsed data in the right
 place and the right format.
 */
 Field** field = table->field;

 /*
 Used in parsing to remember the previous character. The impossible
 value of 256 indicates that the last character either did not exist
 (we are on the first one), or its value is irrelevant.
 */
 int last_c = 256;

 /* Set to 1 if we are inside a quoted string. */
 int in_quote = 0;

 /* How many bytes we have seen so far in this line. */
 uint bytes_parsed = 0;

 /* Loop break flag. */
 int line_read_done = 0;

 /* Truncate the field value buffer. */
 field_buf.length(0);

 /* Attempt to read a whole line. */
 for (;!line_read_done;)
 {
 /* Read a block into a local buffer and deal with errors. */
 char buf[CSV_READ_BLOCK_SIZE];
 uint bytes_read = my_pread(file->fd,buf,sizeof(buf),cur_pos,MYF(MY_WME));
 if (bytes_read == MY_FILE_ERROR)
 return HA_ERR_END_OF_FILE;
 if (!bytes_read)
 return HA_ERR_END_OF_FILE;

 /*
 If we reach this point, the read was successful. Start parsing the
 data we have read.
 */
 char* p = buf;
 char* buf_end = buf + bytes_read;

 /* For each byte in the buffer. */
 for (;p < buf_end;)
 {
 char c = *p;
 int end_of_line = 0;

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

142 | Chapter 7: The Storage Engine Interface

 int end_of_field = 0;
 int char_escaped = 0;

 switch (c)
 {
 /*
 A double-quote marks the start or the end of a quoted string
 unless it has been escaped.
 */
 case '"':
 if (last_c == '"' || last_c == '\\')
 {
 field_buf.append(c);
 char_escaped = 1;

 /*
 When we see the first quote, in_quote will get flipped.
 A subsequent quote, however, tells us we are still inside the
 quoted string.
 */
 if (last_c == '"')
 in_quote = 1;
 }
 else
 in_quote = !in_quote;
 break;
 /*
 Treat the backslash as an escape character.
 */
 case '\\':
 if (last_c == '\\')
 {
 field_buf.append(c);
 char_escaped = 1;
 }
 break;

 /*
 Set the termination flags on end-of-line unless it is quoted.
 */
 case '\r':
 case '\n':
 if (in_quote)
 {
 field_buf.append(c);
 }
 else
 {
 end_of_line = 1;
 end_of_field = 1;
 }
 break;

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

Adding a Custom Storage Engine to MySQL | 143

 /* Comma signifies end-of-field unless quoted. */
 case ',':
 if (in_quote)
 {
 field_buf.append(c);
 }
 else
 end_of_field = 1;
 break;

 /*
 Regular charcters just get appended to the field
 value buffer.
 */
 default:
 field_buf.append(c);
 break;
 }

 /*
 If at the end a field, and a matching field exists in the table
 (it may not if the CSV file has extra fields), transfer the field
 value buffer contents into the corresponding Field object. This
 actually takes care of initializing the correct parts of the buffer
 argument passed to us by the caller. The internal convention of the
 optimizer dictates that the buffer pointers of the Field objects
 must already be set up to point at the correct areas of the buffer
 argument prior to calls to the data-retrieval methods of the handler
 class.
 */
 if (end_of_field && *field)
 {
 (*field)->store(field_buf.ptr(),field_buf.length(),
 system_charset_info);
 field++;
 field_buf.length(0);
 }

 /*
 Special case - a character that was escaped itself should not be
 regarded as an escape character.
 */
 if (char_escaped)
 last_c = 256;
 else
 last_c = c;
 p++;

 /* Prepare for loop exit on end-of-line. */
 if (end_of_line)
 {
 if (c == '\r')

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

144 | Chapter 7: The Storage Engine Interface

 p++;
 line_read_done = 1;
 in_quote = 0;
 break;
 }
 }

 /* Block read/parse cycle is complete - update the counters. */
 bytes_parsed += (p - buf);
 cur_pos += bytes_read;
 }

 /*
 Now we are done with the line read/parsing. We still have a number
 of small tasks left to complete the job.
 */

 /* Initialize the NULL indicator flags in the record. */
 memset(buf,0,table->null_bytes);

 /*
 The parsed line may not have had the values of all of the fields.
 Set the remaining fields to their default values.
 */
 for (;*field;field++)
 {
 (*field)->set_default();
 }

 /* Move the cursor to the next record. */
 pos += bytes_parsed;

 /* Report success. */
 return 0;
}

/* Called once for each record during a sequential table scan. */
int ha_csv::rnd_next(byte *buf)
{
 /*
 Increment the global statistics counter displayed by SHOW STATUS
 under Handler_read_rnd_next.
 */
 statistic_increment(ha_read_rnd_next_count,&LOCK_status);

 /* fetch_line() does the actual work. */
 int error = fetch_line(buf);

 /*
 On success, update our estimate for the total number of records in the
 table.
 */

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

Adding a Custom Storage Engine to MySQL | 145

 if (!error)
 records++;

 /* Return whatever code we got from fetch_line() to the caller. */
 return error;
}

/*
 Positions the scan cursor at the position specified by set_pos and
 read the record at that position. Used in GROUP BY and ORDER BY
 optimization when the "filesort" technique is applied.
*/
int ha_csv::rnd_pos(byte * buf, byte *set_pos)
{
 statistic_increment(ha_read_rnd_count,&LOCK_status);
 pos = ha_get_ptr(set_pos,ref_length);
 return fetch_line(buf);
}

/*
 Stores the "position" reference to the current record in the ref
 variable. At this point, this method is called in situations that are
 impossible for this storage engine, but this could change in the future.
 */
void ha_csv::position(const byte *record)
{
 ha_store_ptr(ref,ref_length,pos);
}

/* Updates the statistical variables in the handler object. */
void ha_csv::info(uint flags)
{
 /*
 The optimizer must never think that the table has fewer than
 two records unless this is indeed the case. Reporting a smaller number
 makes the optimizer assume it needs to read no more than one record from
 the table. Our storage engine doesn't always know the number of records,
 and in many cases cannot even make a good guess. To be safe and to keep
 things simple, we always report that we have at least 2 records.
 */
 if (records < 2)
 records = 2;

 /*
 The rest of the variables merely appear in SHOW TABLE STATUS output and
 do not affect the optimizer. For the purpose of this example they can
 be set to 0.
 */

 deleted = 0;
 errkey = 0;
 mean_rec_length = 0;

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

146 | Chapter 7: The Storage Engine Interface

 data_file_length = 0;
 index_file_length = 0;
 max_data_file_length = 0;
 delete_length = 0;
 if (flags & HA_STATUS_AUTO)
 auto_increment_value = 1;
}

/*
 This is essentially a callback for the table lock manager, saying:
 "I am locking this table internally; please take care of the things
 specific to the storage engine that need to be done in conjunction with
 this lock." MyISAM needed to lock the files in this case in some
 configurations, thus the name external_lock(). In our case, there is
 nothing to do - we just report success.
*/
int ha_csv::external_lock(THD *thd, int lock_type)
{
 return 0;
}

/*
 Returns an array of all possible file extensions used by the storage
 engine.
*/
const char ** ha_csv::bas_ext() const
{
 return csv_ext;
}

/*
 We need this function to report that the records member cannot be used
 to optimize SELECT COUNT(*) without a WHERE clause. Note that the value
 records actually shows the correct count after a full scan, and can
 indeed be used to optimize SELECT COUNT(*). This is left as an exercise
 for the reader.
 */
ulong ha_csv::table_flags(void) const
{
 return HA_NOT_EXACT_COUNT;
}

/*
 Our storage engine does not support keys, so we report no special
 key capabilities.
*/
ulong ha_csv::index_flags(uint idx, uint part, bool all_parts) const
{
 return 0;
}

/* Nothing special to do on the storage engine level when the table

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

Adding a Custom Storage Engine to MySQL | 147

Integration Instructions for Version 5.1
The following instructions were created using version 5.1.11. While it appears that
the procedure of custom storage-engine integration should have stabilized at that
point, it is still possible that some changes might be introduced into later 5.1 ver-
sions that would require modifications to these instructions. When in doubt, search
for the string “blackhole” in the source and follow the pattern of the blackhole stor-
age engine.

1. Create a directory storage/oreilly-csv in the source tree, and copy the files ha_
csv_5_1.h and ha_csv_5_1.cc from the book’s web site into that directory, nam-
ing them ha_csv.h and ha_csv.cc accordingly. If you do not have access to the
Internet, use Examples 7-3 and 7-4.

2. Copy Makefile.am from the book’s web site (or from Example 8-5) to storage/
oreilly-csv.

3. Search for MYSQL_STORAGE_ENGINE in configure.in to find the section for plug-in
macros. Add the following lines right after the blackhole plug-in section (or after
some other plug-in section):

MYSQL_STORAGE_ENGINE(oreilly-csv,, [Example Storage Engine for Understanding
MySQL Internals],
 [Read-only access to CSV files])
MYSQL_PLUGIN_DIRECTORY(oreilly-csv, [storage/oreilly-csv])
MYSQL_PLUGIN_STATIC(oreilly-csv, [liboreillycsv.a])

4. Execute the following shell commands:
$ autoconf
$ automake
$./configure --prefix=/usr --with-plugins=oreilly-csv
$ make

 is created. The .CSV file is placed externally into the data directory.
*/
int ha_csv::create(const char *name, TABLE *form, HA_CREATE_INFO *info)
{
 return 0;
}

/* This method is needed for the table lock manager to work right. */
THR_LOCK_DATA ** ha_csv::store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type=lock_type;

 *to++ = &lock;
 return to;
}

Example 7-2. The ha_csv.cc storage engine implementation for MySQL 4.1 (continued)

148 | Chapter 7: The Storage Engine Interface

Here are Examples 7-3, 7-4, and 7-5.

Example 7-3. The ha_csv.h storage engine header file for MySQL 5.1

/* Tell GCC this is a header file */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface
#endif

/* The CSV lines could be big. Read them in blocks of 512. */
#define CSV_READ_BLOCK_SIZE 512

/*
 Following the tradition of other storage engines, we put all of the
 low-level information under a separate structure.
 */
struct CSV_INFO
{
 char fname[FN_REFLEN+1];
 int fd;
} ;

/* Now define the handler class. */
class ha_csv: public handler
{
protected:
 /* Low-level storage engine data. */
 CSV_INFO* file;

 /* Lock structures for the table lock manager. */
 THR_LOCK_DATA lock;
 THR_LOCK thr_lock;

 /* Table scan cursor.*/
 my_off_t pos;

 /* Buffer for reading CSV line blocks. */
 char read_buf[CSV_READ_BLOCK_SIZE];

 /* Buffer for parsing the field values. */
 String field_buf;

 /* See the comment in the implementation file. */
 int fetch_line(byte* buf);

 /* Initializes the storage engine object for a sequential scan. */
 int rnd_init(bool scan)
 {
 pos = 0;
 records = 0;
 return 0;
 }
 int index_init(uint idx)
 {

Adding a Custom Storage Engine to MySQL | 149

 active_index=idx;
 return 0;
 }
public:
 /* Constructors. */
 ha_csv(TABLE_SHARE* table_arg);

 /* Destructor. */
 ~ha_csv() {}

 /* See the comments in the implementation file for the methods below. */
 int open(const char *name, int mode, uint test_if_locked);
 int close(void);
 int rnd_next(byte *buf);
 int rnd_pos(byte * buf, byte *pos);
 void position(const byte *record);
 void info(uint flags);
 int external_lock(THD *thd, int lock_type);
 const char **bas_ext() const;
 ulong table_flags(void) const;
 ulong index_flags(uint idx, uint part, bool all_parts) const;
 int create(const char *name, TABLE *form, HA_CREATE_INFO *info);
 THR_LOCK_DATA **store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type);

 /*
 Returns the storage engine type string used in the output of
 SHOW TABLE STATUS
 */
 const char *table_type() const { return "OREILLY_CSV"; }

};

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1

/* Tell GCC we are in the implementation source file. */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation
#endif

#include "mysql_priv.h"
#include <mysql/plugin.h>

/* Our own header file for this storage engine. */
#include "ha_csv.h"

/* Used by ha_csv::bas_ext(). */
static const char* csv_ext[]= {".csv",0};

/* A callback for the handlerton descriptor */
static handler *csv_create_handler(TABLE_SHARE *table);

Example 7-3. The ha_csv.h storage engine header file for MySQL 5.1 (continued)

150 | Chapter 7: The Storage Engine Interface

/*
 Used in the plug-in as well as the handlerton descriptor. Corresponds
 to the name of the storage
 engine used in the ENGINE= syntax
 */
static const char csv_hton_name[]= "OREILLY_CSV";

/*
 Used in the plug-in descriptor. Corresponds to the comment that appears
 in the output of SHOW STORAGE ENGINES
*/
static const char csv_hton_comment[]=
 "Simple read-only CSV file storage engine";

handlerton csv_hton= {
 MYSQL_HANDLERTON_INTERFACE_VERSION,
 csv_hton_name,
 SHOW_OPTION_YES,
 csv_hton_comment,
 DB_TYPE_BLACKHOLE_DB,
 NULL,
 0, /* slot */
 0, /* savepoint size. */
 NULL, /* close_connection */
 NULL, /* savepoint */
 NULL, /* rollback to savepoint */
 NULL, /* release savepoint */
 NULL, /* commit */
 NULL, /* rollback */
 NULL, /* prepare */
 NULL, /* recover */
 NULL, /* commit_by_xid */
 NULL, /* rollback_by_xid */
 NULL, /* create_cursor_read_view */
 NULL, /* set_cursor_read_view */
 NULL, /* close_cursor_read_view */
 csv_create_handler, /* Create a new handler */
 NULL, /* Drop a database */
 NULL, /* Panic call */
 NULL, /* Start Consistent Snapshot */
 NULL, /* Flush logs */
 NULL, /* Show status */
 NULL, /* Partition flags */
 NULL, /* Alter table flags */
 NULL, /* Alter Tablespace */
 NULL, /* Fill FILES table */
 HTON_CAN_RECREATE | HTON_ALTER_CANNOT_CREATE,
 NULL, /* binlog_func */
 NULL, /* binlog_log_query */
 NULL /* release_temporary_latches */
};

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

Adding a Custom Storage Engine to MySQL | 151

/*
 A callback wrapper used for instatiating the handler object.
*/
static handler *csv_create_handler(TABLE_SHARE *table)
{
 return new ha_csv(table);
}

/* Constructor */
ha_csv::ha_csv(TABLE_SHARE *table_arg)
 :handler(&csv_hton, table_arg)
{}

/* Called when the table is opened. */
int ha_csv::open(const char *name, int mode, uint test_if_locked)
{
 /* Initialize the lock structures used by the lock manager. */
 thr_lock_init(&thr_lock);
 thr_lock_data_init(&thr_lock,&lock,NULL);

 /* Allocate memory for the data file descriptor. */
 file= (CSV_INFO*)my_malloc(sizeof(CSV_INFO),MYF(MY_WME));
 if (!file)
 return 1;

 /* Translate the name of the name into the datafile name. */
 fn_format(file->fname, name, "", ".csv",
 MY_REPLACE_EXT|MY_UNPACK_FILENAME);

 /*
 Open the file, and save the file handle id in the data
 file descriptor structure.
 */
 if ((file->fd = my_open(file->fname,mode,MYF(0))) < 0)
 {
 int error = my_errno;
 close();
 return error;
 }

 /* Read operations start from the beginning of the file. */
 pos = 0;
 return 0;
}

/* Called when the table is closed. */
int ha_csv::close(void)
{

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

152 | Chapter 7: The Storage Engine Interface

 /*
 Clean up the lock structures, close the file handle, and
 deallocate the datafile descriptor memory.
 */
 thr_lock_delete(&thr_lock);
 if (file)
 {
 if (file->fd >= 0)
 my_close(file->fd, MYF(0));
 my_free((gptr)file,MYF(0));
 file = 0;
 }
 return 0;
}

/*
 Read the line from the current position into the
 caller-provided record buffer.
 */
int ha_csv::fetch_line(byte* buf)
{
 /*
 Keep track of the current offset in the file as we read
 portions of the line into a buffer.
 Start at the current read cursor position.
 */
 my_off_t cur_pos = pos;

 /*
 We will use this to iterate through the array of
 table field pointers to store the parsed data in the right
 place and the right format.
 */
 Field** field = table->field;

 /*
 Used in parsing to remember the previous character. The impossible
 value of 256 indicates that the last character either did not exist
 (we are on the first one), or its value is irrelevant.
 */
 int last_c = 256;

 /* Set to 1 if we are inside a quoted string. */
 int in_quote = 0;

 /* How many bytes we have seen so far in this line. */
 uint bytes_parsed = 0;

 /* Loop breaker flag. */
 int line_read_done = 0;

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

Adding a Custom Storage Engine to MySQL | 153

 /* Truncate the field value buffer. */
 field_buf.length(0);

 /* Attempt to read a whole line. */
 for (;!line_read_done;)
 {
 /* Read a block into a local buffer and deal with errors. */
 char buf[CSV_READ_BLOCK_SIZE];
 uint bytes_read = my_pread(file->fd,buf,sizeof(buf),cur_pos,MYF(MY_WME));
 if (bytes_read == MY_FILE_ERROR)
 return HA_ERR_END_OF_FILE;
 if (!bytes_read)
 return HA_ERR_END_OF_FILE;

 /*
 If we reach this point, the read was successful. Start parsing the
 data we have read.
 */
 char* p = buf;
 char* buf_end = buf + bytes_read;

 /* For each byte in the buffer. */
 for (;p < buf_end;)
 {
 char c = *p;
 int end_of_line = 0;
 int end_of_field = 0;
 int char_escaped = 0;

 switch (c)
 {
 /*
 A double-quote marks the start or the end of a quoted string
 unless it has been escaped.
 */
 case '"':
 if (last_c == '"' || last_c == '\\')
 {
 field_buf.append(c);
 char_escaped = 1;

 /*
 When we see the first quote, in_quote will get flipped.
 A subsequent quote, however, tells us we are still inside the
 quoted string.
 */
 if (last_c == '"')
 in_quote = 1;
 }
 else
 in_quote = !in_quote;
 break;

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

154 | Chapter 7: The Storage Engine Interface

 /*
 Treat the backslash as an escape character.
 */
 case '\\':
 if (last_c == '\\')
 {
 field_buf.append(c);
 char_escaped = 1;
 }
 break;

 /*
 Set the termination flags on end-of-line unless it is quoted.
 */
 case '\r':
 case '\n':
 if (in_quote)
 {
 field_buf.append(c);
 }
 else
 {
 end_of_line = 1;
 end_of_field = 1;
 }
 break;

 /* Comma signifies end-of-field unless quoted. */
 case ',':
 if (in_quote)
 {
 field_buf.append(c);
 }
 else
 end_of_field = 1;
 break;

 /*
 Regular characters just get appended to the field
 value buffer.
 */
 default:
 field_buf.append(c);
 break;
 }

 /*
 If at the end a field, and a matching field exists in the table
 (it may not if the CSV file has extra fields), transfer the field
 value buffer contents into the corresponding Field object. This
 actually takes care of initializing the correct parts of the buffer
 argument passed to us by the caller. The internal convention of the

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

Adding a Custom Storage Engine to MySQL | 155

 optimizer dictates that the buffer pointers of the Field objects
 must already be set up to point at the correct areas of the buffer
 argument prior to calls to the data-retrieval methods of the handler
 class.
 */
 if (end_of_field && *field)
 {
 (*field)->store(field_buf.ptr(),field_buf.length(),
 system_charset_info);
 field++;
 field_buf.length(0);
 }

 /*
 Special case - a character that was escaped itself should not be
 regarded as an escape character.
 */
 if (char_escaped)
 last_c = 256;
 else
 last_c = c;
 p++;

 /* Prepare for loop exit on end-of-line. */
 if (end_of_line)
 {
 if (c == '\r')
 p++;
 line_read_done = 1;
 in_quote = 0;
 break;
 }
 }

 /* Block read/parse cycle is complete - update the counters. */
 bytes_parsed += (p - buf);
 cur_pos += bytes_read;
 }

 /*
 Now we are done with the line read/parsing. We still have a number
 of small tasks left to complete the job.
 */

 /* Initialize the NULL indicator flags in the record. */
 memset(buf,0,table->s->null_bytes);

 /*
 The parsed line may not have had the values of all of the fields.
 Set the remaining fields to their default values.
 */

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

156 | Chapter 7: The Storage Engine Interface

 for (;*field;field++)
 {
 (*field)->set_default();
 }

 /* Move the cursor to the next record. */
 pos += bytes_parsed;

 /* Report success. */
 return 0;
}

/* Called once for each record during a sequential table scan. */
int ha_csv::rnd_next(byte *buf)
{
 /*
 Increment the global statistics counter displayed by SHOW STATUS
 under Handler_read_rnd_next.
 */
 ha_statistic_increment(&SSV::ha_read_rnd_next_count);

 /* fetch_line() does the actual work. */
 int error = fetch_line(buf);

 /*
 On success, update our estimate for the total number of records in the
 table.
 */
 if (!error)
 records++;

 /* Return whatever code we got from fetch_line() to the caller. */
 return error;
}

/*
 Positions the scan cursor at the position specified by set_pos and
 read the record at that position. Used in GROUP BY and ORDER BY
 optimization when the "filesort" technique is applied.
*/
int ha_csv::rnd_pos(byte * buf, byte *set_pos)
{
 ha_statistic_increment(&SSV::ha_read_rnd_count);
 pos = my_get_ptr(set_pos,ref_length);
 return fetch_line(buf);
}

/*
 Stores the "position" reference to the current record in the ref
 variable. At this point, this method is called in situations that are
 impossible for this storage engine, but this could change in the future.
 */

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

Adding a Custom Storage Engine to MySQL | 157

void ha_csv::position(const byte *record)
{
 my_store_ptr(ref,ref_length,pos);
}

/* Updates the statistical variables in the handler object */
void ha_csv::info(uint flags)
{
 /*
 The optimizer must never think that the table has fewer than
 two records unless this is indeed the case. Reporting a smaller number
 makes the optimizer assume it needs to read no more than one record from
 the table. Our storage engine doesn't always know the number of records,
 and in many cases cannot even make a good guess. To be safe and to keep
 things simple, we always report that we have at least 2 records.
 */
 if (records < 2)
 records = 2;

 /*
 The rest of the variables merely appear in SHOW TABLE STATUS output and
 do not affect the optimizer. For the purpose of this example they can
 be set to 0.
 */

 deleted = 0;
 errkey = 0;
 mean_rec_length = 0;
 data_file_length = 0;
 index_file_length = 0;
 max_data_file_length = 0;
 delete_length = 0;
 if (flags & HA_STATUS_AUTO)
 auto_increment_value = 1;
}

/*
 This is essentially a callback for the table lock manager saying:
 "I am locking this table internally; please take care of the things
 specific to the storage engine that need to be done in conjunction with
 this lock." MyISAM needed to lock the files in this case in some
 configurations, thus the name external_lock(). In our case, there is
 nothing to do - we just report success.
*/
int ha_csv::external_lock(THD *thd, int lock_type)
{
 return 0;
}

/*
 Returns an array of all possible file extensions used by the storage
 engine.
*/

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

158 | Chapter 7: The Storage Engine Interface

const char ** ha_csv::bas_ext() const
{
 return csv_ext;
}

/*
 We need this function to report that the records member cannot be used
 to optimize SELECT COUNT(*) without a WHERE clause. Note that the value
 records actually shows the correct count after a full scan, and can
 indeed be used to optimize SELECT COUNT(*). This is left as an exercise
 for the reader.
 */
ulong ha_csv::table_flags(void) const
{
 return HA_NOT_EXACT_COUNT;
}

/*
 Our storage engine does not support keys, so we report no special
 key capabilities.
*/
ulong ha_csv::index_flags(uint idx, uint part, bool all_parts) const
{
 return 0;
}

/* Nothing special to do on the storage engine level when the table
 is created. The .CSV file is placed externally into the data directory.
*/
int ha_csv::create(const char *name, TABLE *form, HA_CREATE_INFO *info)
{
 return 0;
}

/* This method is needed for the table lock manager to work right. */
THR_LOCK_DATA ** ha_csv::store_lock(THD *thd,
 THR_LOCK_DATA **to,
 enum thr_lock_type lock_type)
{
 if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
 lock.type=lock_type;

 *to++ = &lock;
 return to;
}

/* Defines the global structure for the plug-in. */
mysql_declare_plugin(oreilly_csv)
{
 MYSQL_STORAGE_ENGINE_PLUGIN,
 &csv_hton,
 csv_hton_name,

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

Adding a Custom Storage Engine to MySQL | 159

There are a number of ways to deploy your new binary. If you plan to extend it,
review the information in Chapter 3 on how to write a test case and execute it in a
debugger. If you just want to run the binary and see what happens, assuming you
already have a regular MySQL installation from the same version as your source, you
can just back up your regular mysqld binary, replace it with the newly built one, and
restart the server.

To see the new storage engine in action, create a comma-delimited file with the base
name matching the name of the table and the extension .csv (e.g., t1.csv), and place
it in the directory corresponding to the database you plan to work in. For example,
if your datadir is set to /var/lib/mysql and you want the table to be created in the

 "Sasha Pachev",
 csv_hton_comment,
 NULL, /* Plugin init function */
 NULL, /* Plugin end function */
 0x0100,
 0
}
mysql_declare_plugin_end;

Example 7-5. Makefile.am for MySQL version 5.1

MYSQLDATAdir = $(localstatedir)
MYSQLSHAREdir = $(pkgdatadir)
MYSQLBASEdir= $(prefix)
MYSQLLIBdir= $(pkglibdir)
INCLUDES = -I$(top_srcdir)/include -I$(top_builddir)/include \
 -I$(top_srcdir)/regex \
 -I$(top_srcdir)/sql \
 -I$(srcdir)
WRAPLIBS=

LDADD =

DEFS = @DEFS@

noinst_HEADERS = ha_csv.h

EXTRA_LIBRARIES = liboreillycsv.a
noinst_LIBRARIES = @plugin_oreilly_csv_static_target@
liboreillycsv_a_CXXFLAGS = $(AM_CFLAGS)
liboreillycsv_a_CFLAGS = $(AM_CFLAGS)
liboreillycsv_a_SOURCES= ha_csv.cc

Don't update the files from bitkeeper
%::SCCS/s.%

Example 7-4. The ha_csv.cc storage engine implementation for MySQL 5.1 (continued)

160 | Chapter 7: The Storage Engine Interface

database test, place the file in the directory /var/lib/mysql/test. After creating the
file, create a table of type OREILLY_CSV with the fields corresponding to those in the
file in the appropriate database. You are now ready to run SELECT queries on the
table.

The comments in the long examples contain detailed explanations of the finer points
of the code. I will add a few comments here on the issues you would need to deal
with were you to extend the engine.

To simplify the example, we have made our storage engine read-only; there is no
support for updates or delete operations. To add the ability to write, we would need
to address the issue of having multiple instances of the handler object for the same
table. In our example, this does not present a big problem other than wasting file
descriptors. Write access will require us to keep track of the current write position,
which could catch us by surprise if another instance of the handler object was used
to perform a write. Other storage engines solve this problem by maintaining a cache
of shared, low-level table descriptor structures. This also has a nice side effect of
using fewer file descriptors. For an example of a CSV storage engine that has write
capabilities, take a look at sql/examples/ha_tina.h and sql/examples/ha_tina.cc.

Our storage engine does not support keys. If you want to add key support, it is
highly recommended that you implement the write capability first. Afterward, you
can have a lot of fun creating your own B-trees, hashes, and other forms of indexing.

Our engine reads blocks from a file descriptor using calls to my_pread(), and then
parses them. This is not as efficient and convenient as using mmap(), but it is more
robust in case of an I/O error. The example in sql/examples/ha_tina.cc uses mmap().
InnoDB uses regular file I/O. MyISAM uses mmap() for compressed tables. In version
5.1, MyISAM has the option to use mmap() for regular tables as well.

161

Chapter 8 CHAPTER 8

Concurrent Access and Locking8

A proper locking mechanism is necessary to ensure data consistency when there is a
possibility of multiple clients accessing and possibly modifying the same data at the
same time. There are three main approaches to solving this problem: table-level
locks, page-level locks, and row-level locks. Each approach has its own advantages
and disadvantages.

Table-level locks have the simplest logic, which results in fewer bugs and better per-
formance in the area of lock acquisition. Deadlocks can be fairly easily avoided. On
the other hand, locking the entire table results in poor performance for applications
that do a large number of concurrent reads and writes.

Row-level locks allow high performance at a very high level of concurrency at the
cost of greater complexity in the implementation. This results in slower performance
for applications that have a low probability of lock contention as well as higher prob-
ability of bugs. It is also very difficult to completely avoid deadlocks, and many
implementations do deadlock detection instead.

As the granularity of a lock decreases, the amount of memory required to lock the
same amount of data generally increases. So does the complexity of the algorithm,
and the potential for a deadlock. However, the decrease in the granularity of the lock
increases the potential for concurrent access, which can delay the unfortunate appli-
cation that has to wait for the lock.

The row-level lock has the smallest granularity; the table-level lock has the greatest;
and the page-level lock comes in between, offering a compromise.

MyISAM and MEMORY storage engines can only work with table-level locks.
InnoDB supports row-level locks, and Berkeley DB supports page-level locks.

When a parser processes a query, it determines somewhat simplistically what type of
table locks need to be acquired based on the query type. Once the execution reaches
the lock manager, it gives each associated storage engine an opportunity to update
the type of lock for each table. Then the table locks are acquired according to a

162 | Chapter 8: Concurrent Access and Locking

generic storage-engine-independent algorithm. The storage engines that support
finer granularity locks request a lock that permits concurrent reads and writes, and
then handle the locking issues internally.

The architecture of locking in MySQL is largely a result of its development history.
MySQL was originally built with a storage-engine-independent table lock manager
and the original storage engines (MyISAM and MEMORY) performed all of the oper-
ations under the assumption that the table would not be modified concurrently. In
the early days of 3.23, a feature was introduced that changed this assumption. It
became possible in MyISAM to concurrently read from a table and insert a new row
into it as long as that row was being placed at the end of the datafile. This feature
became known as concurrent insert.

The introduction of concurrent insert required some changes to the table lock man-
ager but did not alter its basic architecture. Prior to that, the locking algorithm was
entirely determined by the query. The newly introduced complication was solved by
adding a callback function pointer to the lock structure to check for the availability
of concurrent insert. If the pointer is set to 0, or if the callback reports that concur-
rent insert is not available, the lock gets upgraded to a regular write lock.

Things changed with the arrival of BDB, which supports page-level locks. It intro-
duced the challenge of making sure that the table lock manager would not try to lock
the entire table when only one or several rows needed to be locked. Now a simple
callback was not enough. Somewhere down the call hierarchy the storage engine
now needed to examine the nature of the query and communicate to the table lock
manager which tables it did not want locked. The problem was solved by adding the
new method handler::store_lock(), which permits the storage engine to change the
types of the locks originally requested by the query parser.

Table Lock Manager
As explained earlier, all queries involving tables of all storage engines go through the
table lock manager regardless of the granularity levels of the locks supported by the
storage engine. For example, even if row-level locks are supported, a special table
lock is acquired that permits concurrent write access. In the source code, all possible
lock types are defined in the enum thr_lock_type from include/thr_lock.h. Table 8-1
lists and discusses the supported lock types.

Table 8-1. Types of locks in MySQL

Lock type Description

TL_IGNORE A special value used in locking requests to communicate that nothing should be
done in the lock descriptor structures.

TL_UNLOCK A special value used in locking requests to communicate that a lock should be
released.

Table Lock Manager | 163

Table locks are divided into two groups: read locks and write locks. The table lock
manager maintains four queues for each table:

• Current read-lock queue (lock->read)

• Pending read-lock queue (lock->read_wait)

• Current write-lock queue (lock->write)

• Pending write-lock queue (lock->write_wait)

Threads that currently hold a read lock are found in the current read-lock queue in
the order of lock acquisition. Threads currently waiting for a read lock are found in
the pending read-lock queue. The same paradigm applies to the current and pending
write-lock queues.

Lock acquisition logic can be found in thr_lock() in mysys/thr_lock.c.

Read Lock Request
A read lock is always granted as long as there are no current write locks on the table
and no higher-priority write locks in the pending write-lock queue. If the lock
request can be granted immediately, the corresponding lock descriptor is placed in
the current read-lock queue. Otherwise, the lock request enters the pending read-
lock queue, and the requesting thread suspends itself to wait for the lock (see wait_
for_lock() in mysys/thr_lock.c).

TL_READ A regular read lock.

TL_READ_WITH_SHARED_LOCKS A higher priority lock used by InnoDB for SELECT... LOCK IN SHARE MODE.

TL_READ_HIGH_PRIORITY A high priority read lock used by SELECT HIGH_PRIORITY... .

TL_READ_NO_INSERT A special read lock that does not allow concurrent inserts.

TL_WRITE_ALLOW_WRITE A special lock used by storage engines that take care of locking on their own. Other
threads are allowed to acquire read and write locks while this lock is being held.

TL_WRITE_ALLOW_READ A special lock for ALTER TABLE. Altering a table involves creating a temporary
table with the new structure, populating it with new rows, and then renaming it
to the original name. Thus a table can be read while being altered during most of
the operation.

TL_WRITE_CONCURRENT_INSERT The write lock used by concurrent inserts. If this type of lock is already placed on
the table, read locks are granted to other threads immediately unless TL_READ_
NO_INSERT is requested.

TL_WRITE_DELAYED A special lock used by INSERT DELAYED....

TL_WRITE_LOW_PRIORITY A low-priority lock used inUPDATE LOW_PRIORITY... and other queries with
the LOW_PRIORITY attribute.

TL_WRITE A regular write lock.

TL_WRITE_ONLY An internal value used when aborting old locks during operations that require
closing tables.

Table 8-1. Types of locks in MySQL (continued)

Lock type Description

164 | Chapter 8: Concurrent Access and Locking

The requested read and pending write locks are prioritized according to the follow-
ing rules:

• A TL_WRITE lock in the pending write-lock queue has precedence over all read
locks except for TL_READ_HIGH_PRIORITY.

• A request for TL_READ_HIGH_PRIORITY has precedence over any pending write lock.

• All write locks in the pending write-lock queue that are not a TL_WRITE have a
lower priority than a read lock.

The presence of a current write lock causes the requesting thread to suspend itself
and wait for the lock to become available except in the cases below:

• With the approval of the storage engine, accomplished through the check_
status() function pointer call in the THR_LOCK descriptor, all read locks except
TL_READ_NO_INSERT permit one TL_WRITE_CONCURRENT_INSERT lock.

• TL_WRITE_ALLOW_WRITE permits all read and write locks except TL_WRITE_ONLY.

• TL_WRITE_ALLOW_READ permits all read locks except TL_READ_NO_INSERT.

• TL_WRITE_DELAYED permits all read locks except TL_READ_NO_INSERT.

• TL_WRITE_CONCURRENT_INSERT permits all read locks except TL_READ_NO_INSERT.

• The conflicting write lock belongs to the requesting thread.

Write Lock Request
When a write lock is requested, the table lock manager first checks whether there are
any write locks already in the current write-lock queue. If there are none, the pend-
ing write-lock queue is checked. If the pending write-lock queue is not empty, the
request is placed in the write-lock queue and the thread suspends itself to wait for
the lock. Otherwise, with the empty pending write-lock queue, the current read-lock
queue is checked. The presence of a current read lock causes the write lock request
to wait except in the following cases:

• The requested lock is TL_WRITE_DELAYED.

• The requested lock is TL_WRITE_CONCURRENT_INSERT or TL_WRITE_ALLOW_WRITE and
there are no TL_READ_NO_INSERT locks in the current read-lock queue.

If the exceptional requirements are met, the lock request is granted and placed in the
current write-lock queue.

If there are locks in the current write queue, the exceptional case of TL_WRITE_ONLY
request is handled first. TL_WRITE_ONLY is granted only if there are no current write
locks. Otherwise, the request is aborted and an error code is returned to the caller.

With the exceptional case out of the way, the table lock manager can now examine
the possibility of coexistence for the requested and the current write lock at the head
of the current write-lock queue. The request can be granted without a wait under
one of the following circumstances:

Table Lock Manager | 165

• The conflicting write lock in the current write-lock queue is TL_WRITE_ALLOW_
WRITE; the request is also TL_WRITE_ALLOW_WRITE; and the pending write-lock
queue is empty.

• The conflicting write lock is being held by the requesting thread.

Storage engine interaction with the table lock manager

The locking mechanism provided by the table lock manager is insufficient for a num-
ber of storage engines. MyISAM, InnoDB, NDB, and Berkeley DB storage engines
provide some form of an internal locking mechanism.

MyISAM. MyISAM mostly depends on the table lock manager to ensure proper con-
current access. However, there is one exception: a concurrent insert. If the insert
operation results in writing the record at the end of the datafile, reading can be done
without a lock. In this case, the table lock manager permits one concurrent insert
lock and many read locks. The storage engine ensures consistency by remembering
the old end of file prior to the start of the concurrent insert, and by not permitting
the reads to read past the old end of file until the concurrent insert is complete.

InnoDB. InnoDB asks the table lock manager to defer locking to the storage engine by
changing the lock type to TL_WRITE_ALLOW_WRITE for write locks. Internally, it imple-
ments a complex row-level locking system that includes deadlock detection.

NDB. NDB is a distributed storage engine that also supports row-level locks. It deals
with the table locks in a manner similar to InnoDB.

Berkeley DB. Berkeley DB internally supports page-level locks, and thus needs the write
locks to become TL_WRITE_ALLOW_WRITE just like NDB and InnoDB.

InnoDB Locking
Although InnoDB is not the only storage engine that supports some internal locking
mechanism, it is perhaps the most interesting. Being the most stable and mature of
all the transactional storage engines in MySQL, it is usually the engine of choice for
mission-critical, high-load environments. This section provides a brief overview of
InnoDB locking.

Lock types

There are two types of row-level locks: shared and exclusive. InnoDB supports both.

To support the coexistence of row- and table-level locks, InnoDB also uses so-called
intention locks on a table. There are also two types of intention table locks, shared
and exclusive.

166 | Chapter 8: Concurrent Access and Locking

As the name intention locks suggests, it is possible for another transaction to acquire
another shared lock if one is holding a shared lock already. However, only one trans-
action can hold an exclusive lock at any one time.

It is necessary for a transaction to acquire the appropriate intention lock on the table
before locking a row in it. Shared row locks are possible after acquiring an exclusive
intention lock. However, only an exclusive intention lock allows a transaction to
acquire an exclusive row lock.

Record locking

Record or row locking occurs as InnoDB is searching for records requested by the
optimizer. What InnoDB actually locks is the index entry, the space before it, and
the space after the last record. This method is called next-key locking.

The next-key locking is necessary to avoid the phantom row problem in transactions.
If we did not lock the space before the record, it would be possible for another trans-
action to insert another record in between. Thus, if we were to run the same query
again, we would see the record that was not there the first time we ran the query.
This would make it impossible to meet the requirement of the serializable read trans-
action isolation level.

Dealing with deadlocks

What happens if transaction A locks record R1, and then tries R2, while transaction
B simultaneously locks record R2 first, and then tries to lock R1? Row-level locking
naturally introduces the problem of deadlocks.

InnoDB has an automatic deadlock detection algorithm. It will usually roll back the
last transaction involved in a deadlock. The deadlock detection algorithm fails in
some cases; for example, if tables from other storage engines are used, or if some
tables were locked with LOCK TABLES. Additionally, some transactions may be consid-
ered to be in a virtual deadlock. For example, if a query is written is such a way that
it examines several billion records, it may not release its locks for weeks, although
from a theoretical point of view it eventually will. For such situations InnoDB uses a
lock timeout, which is controlled by the configuration variable innodb_lock_wait_
timeout.

Any transaction can potentially be caught in a deadlock. It is important for the appli-
cation programmer to write code that deals with this possibility. Usually, retrying a
rolled-back transaction is sufficient. It is also possible to minimize the chance of a
deadlock by careful programming. Accessing records always in the same index order,
writing properly optimized queries, and committing transactions frequently are some
of the techniques that help prevent potential deadlocks.

167

Chapter 9 CHAPTER 9

Parser and Optimizer9

The MySQL server receives queries in the SQL format. Once a query is received, it
first needs to be parsed, which involves translating it from what is essentially a tex-
tual format into a combination of internal binary structures that can be easily manip-
ulated by the optimizer.

In this context, when we say optimizer, we refer to the server module responsible for
creating and executing the plan to retrieve the records requested by the query. The
optimizer picks the order in which the tables are joined, the method to read the
records (e.g., read from an index or scan the table), as well as which keys to use. Its
goal is to deliver the query result in the least amount of time possible.

In this chapter, we’ll examine the parser and optimizer in detail.

Parser
MySQL’s parser, like many others, consists of two parts: the lexical scanner and the
grammar rule module. The lexical scanner breaks the entire query into tokens (ele-
ments that are indivisible, such as column names), while the grammar rule module
finds a combination of SQL grammar rules that produce this sequence, and executes
the code associated with those rules. In the end, a parse tree is produced, which can
now be used by the optimizer.

Unlike some parsers, which translate the textual representation of the query into
byte code, MySQL’s parser converts it directly into internal interlinked C/C++ struc-
tures in the program memory.

For example, imagine the server receives the following query:

SELECT count(*),state FROM customer GROUP BY state

168 | Chapter 9: Parser and Optimizer

The lexical scanner examines the stream of query characters, breaks it into tokens,
and identifies each token. It finds the following tokens:

• SELECT

• count

• (

• *

•)

• ,

• state

• FROM

• customer

• GROUP

• BY

• state

Each token is given a type—for example, a keyword, a string literal, a number, an
operator, or a function name. The grammar rules module matches the stream of
tokens against a set of rules, and finds the correct rule, which in this case is the
select rule (see sql/sql_yacc.yy). It initializes the parse tree structure accordingly,
which later leads to the execution of mysql_select() from sql/sql_select.cc.

The parser has two main objectives, not necessarily listed in the order of impor-
tance. First, it must be lightning fast. Many installations of MySQL have to support
the load of thousands of queries per second. This would not be possible if parsing
alone took even one millisecond. Second, the generated parse tree must provide the
information to the optimizer in a way that permits it to access the data efficiently.
The optimizer needs quick access to various parts of the WHERE clause, table, field,
and key lists, ORDER BY and GROUP BY expressions, subquery structuring, and other
data. As difficult as it is to reach those two objectives, the MySQL development team
has largely succeeded at the task so far.

Lexical Scanner
Many open source projects use the very popular utility GNU Flex to generate lexical
scanners. The programmer only provides a set of guidelines for classifying charac-
ters, and Flex produces the C code to do the scanning that can be integrated with the
rest of the code.

Unlike them, MySQL has its own lexical scanner to gain both performance and flexi-
bility. A handwritten token identifier can be fine-tuned with optimizations that are
not possible with generated code. Additionally, it can also be coded to identify the
tokens with context sensitivity.

Parser | 169

A very efficient keyword lookup hash is generated by a special utility called gen_lex_
hash (see sql/gen_lex_hash.cc) prior to the compilation of the server, and then com-
piled with the rest of the code. The generated hash is perfect, meaning there are no
collisions. The scanner (see sql/sql_lex.cc) tags each token as a keyword, a function
name, a number of a particular type, or some other special symbol that has a mean-
ing in the grammar rules.

The list of keywords is found in the array symbols[] in sql/lex.h. The list of functions
is contained in the array sql_functions[] in the same file.

Note that there was a change in later releases of 5.1. Most of the built-in functions
were moved out of the sql_functions[] array into native_functions_hash. Now the
built-in functions are looked up by the grammar rules module instead of the lexical
scanner.

The entry point to the Lexical Scanner is yylex() in sql/sql_lex.cc. The name of the
function has special significance: it needs to be compatible with GNU Bison, the
grammar rules module generator, which expects to retrieve the tokens by calling a
function with this name.

Grammar Rules Module
This module is often called the parser, but I refer to it as the grammar rules module to
separate it from the lexical scanner part of the server. Just like in many other open-
source projects, the grammar rules module is generated using the parser generator
utility GNU Bison. It is recommended that you become familiar with Bison if you
plan on modifying MySQL syntax, or just want to understand the parsing process
better. You can learn more about it from the Bison manual (published by the Free
Software Foundation), also available online at http://www.gnu.org/software/bison/
manual.

The grammar rules are defined in sql/sql_yacc.yy. Bison processes this file to gener-
ate sql/sql_yacc.cc. The entry point to the grammar rules module is yyparse().

Parse Tree
The end result of the parser execution is the parse tree. As you can imagine, the com-
plexity of the SQL syntax requires an equally complex structure that efficiently stores
the information needed for executing every possible SQL statement. While it would
not be possible within the scope of this chapter, or perhaps even one book, to com-
prehensively describe all of the elements of the parse tree, I will attempt to provide a
brief overview of the essentials.

The parse tree is represented by an object of type LEX, which is a typedef for the
structure st_lex from sql/sql_lex.h. LEX has many members. We will focus our atten-
tion on two of them: enum_sql_command sql_command and SELECT_LEX select_lex.

http://www.gnu.org/software/bison/manual
http://www.gnu.org/software/bison/manual

170 | Chapter 9: Parser and Optimizer

The sql_command shows what type of SQL query we are executing, whether it is a
select, an update, an insert, a delete, or some other query type. The value of this field
is used in mysql_execute_command() (see sql/sql_parse.cc) to direct the execution flow
to the function associated with this particular query type.

The select_lex member belongs to the type SELECT_LEX, which is a typedef alias for
the class st_select_lex, also defined in sql/sql_lex.h. The class has many members
containing the information about various query particulars such as the WHERE clause;
the table list; the field list; information about optimizer hints; cross-references to
other instances of SELECT_LEX for subqueries; the ORDER BY, GROUP BY, and HAVING
expressions; and many other details. We will focus on the Item* where member,
which is the root node of the WHERE clause tree, because most of the information
needed by the optimizer is extracted from the WHERE clause.

The Item class defined in sql/item.h is the base class for all other Item_ classes, which
represent the nodes of an expression tree. This family of classes covers arithmetic
operations (e.g., addition, subtraction, multiplication, division), various SQL func-
tions, logical operators such as AND and OR, references to table fields, subqueries
returning one row, and every other element of an SQL expression found in WHERE,
HAVING, GROUP BY, ORDER BY, or the field list of a select query.

Item has several methods whose names begin with val_. The rest of the name
depends on the type of the return value. For example, if the return value is an inte-
ger, the method name is val_int(). The optimizer later uses the Item contained in
the where member of LEX_SELECT to build a filter expression for record combinations
it examines. The filter expressions are evaluated via a call to Item::val_int(). If it
returns 1, the record is considered to have met the constraint and is included in the
result set; otherwise, it is discarded.

The filter expression is identical to the original WHERE clause if the optimizer is not
able to make any improvements to it. Otherwise, it may be rewritten to eliminate
unnecessary computations, and permit better use of keys. It may also contain parts
of the HAVING clause.

An example of an expression tree for the WHERE clause is shown in Figure 9-1. The
expression in the example may have come from the following query:

SELECT count(*) FROM customer WHERE lname='Jones' AND age BETWEEN 25 AND 30

Optimizer
To help you understand the role of the optimizer, consider the following query:

SELECT c.first_name,c.last_name,c.phone,p.name,p.price
FROM customer c,orders o, product p
WHERE c.id = o.
customer_id AND o.product_id = p.id AND o.payment_status = 'FAILED'
ORDER BY c.last_name,c.first_name

Optimizer | 171

We want to retrieve the first name, the last name, the phone number, and the product
name and price for all the orders where payment has failed for one reason or another.

A naïve approach would loop through all of the records of customer, and for each
record of customer loop through all of the records of order, and then for each combi-
nation of the two records loop through each record of product. For each three-record
combination, the retrieval process would examine whether the combination matches
the WHERE clause, and keep only the combinations that do. Afterward, the retrieval
process would sort the matched records and deliver them to the client.

You can see that this approach is not very efficient. Suppose each table has 10,000
records. The optimizer would have to examine 10,000 × 10,000 × 10,000 combina-
tions, which is equal to 1 trillion. With a processor capable of examining 1 million
records per second, the query would take 1 million seconds, or more than 11 days.

On the other hand, suppose we have keys on customer.id, orders.payment_status,
and product.id, and that the keys customer.id and product.id are unique. Since we
have a potentially restrictive constraint that could eliminate a lot of records on
orders.payment_status, it makes sense to start by finding all of the matching records
from orders using the payment_status key. For each of those records we retrieve a
matching record out of customer using the key on its id column, and also a matching
record out of product using the key on its id column. We now have to examine as
many record combinations as there are records in orders that have the payment_
status value set to 'FAILED'. Even if it happens to be every record in our 10,000
record table, we are now examining only 10,000 record combinations.

Although the use of keys did increase the amount of time needed to create each com-
bination, this overhead in the end was worthwhile. According to the standard
MySQL optimizer cost estimate model, each key access takes three times as long for
the same table as the scan access. Therefore, while in the naïve approach our cost of
creating a record combination was 1+1+1=3, the improved approach for the same
operation costs 3+3+3=9. Neglecting the time for examining the combination, we
can now process only 333,333 combinations per second, instead of 1 million. How-
ever, we now need to process no more than 10,000 of them, and our query should
take less than 0.03 seconds, down from 11 days.

Figure 9-1. Parse tree for typical WHERE clause

item_cond_and

item_equal item_func_between

item_field
(Iname)

item_string
("Jones")

item_int
(25)

item_int
(30)

item_field
(age)

172 | Chapter 9: Parser and Optimizer

Thus it becomes apparent that the optimizer must not only figure out a way to
deliver the records requested by a query but also do it in a way that is optimal—or at
least be able to deliver satisfactory performance. This is a much bigger challenge than
just delivering the results, which therefore justifies the name of optimizer for this
module.

MySQL’s optimizer has several important tasks:

• Determine which keys can be used to retrieve the records from tables, and
choose the best one for each table.

• For each table, decide whether a table scan is better than reading on a key. If
there are a lot of records that match the key value, the advantages of the key are
reduced and the table scan becomes faster.

• Determine the order in which tables should be joined when more than one table
is present in the query.

• Rewrite the WHERE clause to eliminate dead code, reducing the unnecessary com-
putations and changing the constraints whenever possible to open the way for
using keys.

• Eliminate unused tables from the join.

• Determine whether keys can be used for ORDER BY and GROUP BY.

• Attempt to replace an outer join with an inner join.

• Attempt to simplify subqueries, as well as determine to what extent their results
can be cached.

• Merge views (expand the view reference as a macro).

Basics of the Optimizer Algorithm
In MySQL optimizer terminology, every query is a set of joins. The term join is used
here more broadly than in SQL commands. A query on only one table is a degener-
ate join. While we normally do not think of reading records from one table as a join,
the same structures and algorithms used with conventional joins work perfectly to
resolve the query with only one table.

Simple queries without subqueries or UNION consist of only one join. Queries with
subqueries that cannot be optimized, as well as UNION queries, will involve more than
one join. Some subqueries may require what can be called a recursive join: while one
join is being performed, the optimizer needs to execute a subquery for each row of
the join, which results in its own join. Nevertheless, a join is the basic unit of the
optimizer’s work. In the source code, a join is connected to the join descriptor class
JOIN defined in sql/sql_select.h. Each join is started by calling mysql_select() from
sql/sql_select.cc.

The procedure described in this section thus falls into two parts: first the optimizer
determines the best join order, then it does a nested loop to accomplish the join.

Optimizer | 173

A join is essentially a Cartesian product of table subsets. Each subset is obtained by
reading records from the table based on a single key value, a key range (or a set of
key ranges), a full index scan, or a full table scan. The records are then eliminated, if
necessary, using the constraints from the WHERE clause.

The optimizer selects the record access methods and puts the tables in an order it
believes would minimize the cost, which is more often than not in proportion to the
total number of record combinations it would have to examine. The problem of
query optimization can be broken down into two parts: first, for a given join order,
find the best access paths for each table, and second, once you have that ability, find
the best join order, or at least a reasonably good one, in a short amount of time.

The first problem is solved by best_access_path() in sql/sql_select.cc. The access
path defines whether the optimizer is going to read on a key, scan the table (ALL), or
scan the key (index). If a key read is performed, it defines how that key is going to be
used—for example, reading one record based on one value (eq_ref), possibly more
than one record based on one value (ref), or a range of values (range). best_access_
path() is called with the precomputed access path for a partial plan (join order).
Therefore, the best access path has already been computed for the old partial plan,
and the optimizer only needs to compute it for the newly added table. The selection
and order of the tables in the old partial plan greatly affect the best access path for
the new table. For example, in one case, the old tables may contain a column whose
value can be used to perform a key read, while in another case that possibility may
not exist, necessitating a full scan for the new table.

The remaining problem of finding the best join order can be solved in two ways: the
exhaustive search (find_best() in sql/sql_select.cc), and the greedy search (greedy_
search() in sql/sql_select.cc). The exhaustive search examines all of the possible com-
binations of tables and finds the best plan. However, it may take a very long time.
The greedy search works as follows: first try all possible combinations of optimizer_
search_depth tables (optimizer_search_depth is a server configuration variable) out of
n tables in the query, and find the best one. Take the first table out of the resulting
set, and place it first in the partial join order. Then examine all possible combina-
tions of optimizer_search_depth tables out of the remaining n–1 tables. For each
tested combination, append it to the existing partial plan and evaluate the cost. Pick
the combination with the lowest cost, and place the first table in that combination
next in the partial plan. Repeat until the cardinality of the set of the remaining tables
reaches optimizer_search_depth.

Both the exhaustive and the greedy search have the optimization to discontinue the
pursuit of the path if the current partial combination has a cost that exceeds the best
cost found so far. Therefore, while in theory the exhaustive search can examine as
many as n! combinations, and the greedy search as many as optimizer_search_depth!
* (n – optimizer_search_depth) combinations, in practice those numbers are very
often substantially reduced.

174 | Chapter 9: Parser and Optimizer

Thus while the greedy search may not always find the best plan, it has a controlled
complexity, and will have the performance advantage over the exhaustive search.
Indeed, it does not matter if the optimizer finds the best plan if the gain in the execu-
tion time is offset by the loss in the discovery time.

For more details, see make_join_statistics(), choose_plan(), optimize_key_use(),
best_access_path(), get_best_combination(), create_ref_for_key(), find_best(), and
greedy_search() in sql/sql_select.cc.

Prior to version 5.0, only the exhaustive search was available. Version
5.0 implemented the greedy search.

After the join order has been determined, the optimizer begins to execute the join.
The join is performed via a sequence of nested loops, starting from the first table. For
each record of the first table, the optimizer loops through the second to create com-
binations. For each record in the second table, in turn, the optimizer loops through
each record of the third, and so on and so forth, creating a record combination for
each iteration of the innermost loop.

The combination is then compared against the WHERE clause of the query—or more
precisely, the optimized filter expression generated from the original WHERE clause.
For example, if the WHERE clause is lname='Johnson' and age=31+1, the filter expres-
sion becomes lname='Johnson' and age=32. You may wonder why anybody would
ever write such a constraint in its unoptimized form. In many applications queries
are frequently generated via complex business logic algorithms, which often produce
unoptimized queries a human would never write. Additionally, query rewriting may
produce such a query when a column reference gets replaced with a constant. Thus,
trivial optimizations like the one discussed here often lead to significant speed gains.

Note that expressions in WHERE are evaluated as early as possible; e.g., if some condi-
tion in WHERE refers only to the first table, it is evaluated after reading a row from the
first table and before joining it to the second table (see make_cond_for_table() in sql_
select.cc).

The matched records are passed to the send_data() method of the result processing
object associated with the join. The resultant processing object may send the records
to the client, write them to a file or a temporary table, or pass them on somewhere
else for further processing. The result processing object type is a derivative of the
select_result class (see sql/sql_class.h and sql/sql_class.cc).

Using EXPLAIN to Understand the Optimizer
The MySQL EXPLAIN command tells the optimizer to show its query plan. A query
plan describes what the optimizer is going to do to solve the query. For example,
start with the table orders; read records on key payment_status; for each record of

Optimizer | 175

orders look up a record in customer on key id; for each (order,customer) combina-
tion look up a corresponding record in product using key id; use the produced
(order, customer, product) combination to update a temporary summary table; and
when finished, iterate through the temporary table retrieving the results of GROUP BY.

Much can be learned by studying the output of EXPLAIN on a query. EXPLAIN shows
the order of the tables in a join, which keys can in theory be used, which keys are
actually used and in what way, whether some records are excluded early using the
WHERE clause constraints, the estimated size of each join subset, whether temporary
tables are used, whether the records are read in the key order already or additional
sorting is required for ORDER BY, and other information relevant to the optimization of
the query.

Let’s begin by looking at an example of EXPLAIN. Suppose we have the following
query:

SELECT count(*) FROM orders o, customer c
WHERE o.customer_id = c.id AND c.state = 'UT'

To understand the query plan, execute the following in the MySQL command-line
client:

EXPLAIN SELECT count(*) FROM orders o, customer c
WHERE o.customer_id = c.id AND c.state = 'UT' \G

The purpose of the \G switch at the end of the query is to request that the result set
be displayed vertically. The output of EXPLAIN contains a lot of columns, which often
makes the default mode of horizontal output unreadable.

The EXPLAIN produces the following output:

1 *************************** 1. row ***********************
2 id: 1
3 select_type: SIMPLE
4 table: c
5 type: ref
6 possible_keys: PRIMARY,state
7 key: state
8 key_len: 2
9 ref: const
10 rows: 12
11 Extra: Using where
12 *************************** 2. row **********************
13 id: 1
14 select_type: SIMPLE
15 table: o
16 type: ref
17 possible_keys: customer_id
18 key: customer_id
19 key_len: 4
20 ref: book.c.id
21 rows: 5
22 Extra: Using index

176 | Chapter 9: Parser and Optimizer

The output on line 4 tells us that the optimizer will first examine the customer table.
It has the option to read either on the PRIMARY or the state key (line 6), and chooses
state (line 7). The state key will be queried by supplying one key value, but the
result may contain more than one record (line 5). The optimizer will use the first 2
bytes of the key, which in this case is the entire key (line 8). The key value used is a
constant supplied directly in the WHERE clause or obtained some other way as opposed
to the value of some other column, which may vary (line 9). The optimizer estimates
that the key lookup will match 12 records (line 10). The records retrieved from this
table will be checked to see whether they match the WHERE clause (line 11).

Line 15 reveals that the second table in the join is orders. Only one key can be used:
customer_id (line 17), and that key does get used (line 18). The first 4 bytes of the
key are used (line 19), which in this case is the entire key. Similar to the key access
method in the customer table for the state key, the customer_id key will be queried
by supplying one key value, and the result may contain more than one record (line
16). However, the value of the key this time is not a constant anymore. It is taken
from the field id of the currently processed record of customer (line 20). It will vary as
the optimizer retrieves different records of customer. Note that this optimization
strategy is possible only if customer is placed before orders in the join order. Thus we
say that orders depends on customer.

The optimizer estimates that on average for every record combination of the tables
preceding the join order (in this case it is just one table, customer), it will have to
examine five records in the orders table (line 21). Because the optimizer needs only
the value of customer_id, it is sufficient to read only the value of the key without also
retrieving the whole record (line 22).

Why did the optimizer choose to do what it did in this example? To help you under-
stand, we’ll force it to choose a different query plan:

EXPLAIN SELECT count(*) FROM orders o STRAIGHT_JOIN customer c
WHERE o.customer_id = c.id AND c.state = 'UT' \G

The STRAIGHT_JOIN directive tells the optimizer that the orders table must come
before the customer table in all of the possible join orders it may consider. In this case
the STRAIGHT_JOIN instruction leaves only one possible combination: first orders, then
customer. EXPLAIN produces the following:

1 ************************* 1. row *************************
2 id: 1
3 select_type: SIMPLE
4 table: o
5 type: index
6 possible_keys: customer_id
7 key: customer_id
8 key_len: 4
9 ref: NULL
10 rows: 19566
11 Extra: Using index

Optimizer | 177

12 ************************ 2. row *************************
13 id: 1
14 select_type: SIMPLE
15 table: c
16 type: eq_ref
17 possible_keys: PRIMARY,state
18 key: PRIMARY
19 key_len: 4
20 ref: book.o.customer_id
21 rows: 1
22 Extra: Using where

The optimizer scans the customer_id index in the orders table (lines 5 and 7) and
estimates it will match 19,566 records (line 10). For each matched record in the
orders table, a corresponding record in the customer table is looked up using the pri-
mary key (line 18), in which case only one match per given value is possible (line 16).
Only one match should indeed be expected since a primary key by definition has to
be unique. The value of the customer_id read previously from the orders table is
used for the key lookup (line 20).

Why was the first plan better than this one? The optimizer chooses the plan that has the
minimum cost, which it estimates (to a great extent) in proportion to the total number
of record combinations it would have to examine. The estimate of the total number of
record combinations is computed as a product of the estimates of the average number
of records that would be retrieved from each table (the rows field of the EXPLAIN out-
put). Thus, according to the estimates, the original plan would examine 12 × 4=48 com-
binations, while the alternative examines many more: 19,566 × 1= 19,566!

What else could the optimizer have done differently? Due to the nature of the WHERE
clause, there are two possible keys to use in the customer table: the primary key and
the state key. Let us try to make the optimizer use the original join order but use the
primary key instead:

EXPLAIN SELECT count(*) FROM customer c FORCE KEY(PRIMARY) STRAIGHT_JOIN orders o
WHERE o.customer_id = c.id AND c.state = 'UT' \G

The EXPLAIN produces:

1 ************************ 1. row ************************
2 id: 1
3 select_type: SIMPLE
4 table: c
5 type: ALL
6 possible_keys: PRIMARY
7 key: NULL
8 key_len: NULL
9 ref: NULL
10 rows: 3913
11 Extra: Using where
12 ************************ 2. row ************************
13 id: 1
14 select_type: SIMPLE
15 table: o

178 | Chapter 9: Parser and Optimizer

16 type: ref
17 possible_keys: customer_id
18 key: customer_id
19 key_len: 4
20 ref: book.c.id
21 rows: 5
22 Extra: Using index

The optimizer, forced to use only the primary key, decided it was not worth it and pre-
ferred to scan the whole table (line 5). Indeed, not having a reference value for the pri-
mary key required a full key traversal. Had it been possible to get everything needed for
the join and the WHERE clause to match from the key without accessing the datafile, the
optimizer would have used the key. However, in order to check the state='UT' con-
straint the optimizer needs to read the value of the state field, which is not a part of
the primary key. Therefore, the entire record has to be fetched, which makes reading
on a key slower than scanning the whole table. The total number of record combina-
tions is 3,913 × 5=19,565, which is much greater than the 48 in the original plan!

Understanding the output of EXPLAIN

As you have seen in the previous examples, EXPLAIN produces a set of rows. Each row
describes a table participating in a join and shows how the records are going to be
retrieved from that table. The order of rows corresponds to the join order in the algo-
rithm. It also shows the order of the queries, which is meaningful only if there is
more than one query involved (for example, in a query with subqueries).

The output of EXPLAIN is in essence a human-readable dump of the JOIN class (see sql/
sql_select.h), which serves as the query plan descriptor. Table 9-1 defines the rela-
tionships between the EXPLAIN fields and corresponding elements of the source code.

Table 9-1. Relationship between EXPLAIN and elements of the source code

EXPLAIN field Description Source code element

id Query ID. Meaningful only when subqueries are used. select_lex->select_number

select_type Indicates what happens with the result set retrieved
from the table. A join not involving subqueries or
UNION will have this value set to simple. See the
upcoming section “Select types” for details.

select_lex->type

table The alias the table is referenced by in the query. If no
alias is used, the real name of this table.

For regular (nonderived) tables,
join_tab[k-1].table->alias,
where k is the number of the table in the
join order. For derived tables,
join_tab[k-1].table->
derived_select_number.

type The method used for retrieving the records from the
table. See the upcoming section “Record access types”
for details.

join_tab[k-1].type, where k is the
number of the table in the join order.

possible_keys A list of keys that can be used in conjunction with the
WHERE clause to retrieve the records from this table.

join_tab[k-1].keys, where k is the
number of the table in the join order.

Optimizer | 179

Select types

This section describes the types of selects that can be indicated by the select_type
field in the output of the EXPLAIN command.

SIMPLE
Select that does not use UNION or subqueries. Example:

SELECT count(*) FROM customer c, orders o WHERE c.id = o.customer_id AND c.state =
'CA'

PRIMARY
The outermost select or the first select of a union. In the following example, the
select from the orders table is labeled PRIMARY. Example:

SELECT * FROM orders WHERE customer_id IN (SELECT id FROM customer WHERE state =
'CA')

UNION
Select that is a part of a union and does not come first in the query. In the fol-
lowing example, SELECT id FROM customer WHERE state = 'AZ' is labeled UNION,
while SELECT id FROM customer WHERE state = 'NV' is PRIMARY.

SELECT id FROM customer WHERE state = 'NV' UNION SELECT id FROM customer WHERE
state = 'AZ'

key The name of the key used for retrieving the records.
When index_merge optimization is used, contains a
list of keys.

If the key is used to look up one or more
records based on one value of the key or its
prefix, the zero-based index number of the
key is contained in join_tab[k-1].
ref.key. If the index is being scanned,
the key number is found in join_
tab[k-1].index. If a range optimiza-
tion is performed, the key number is found
in join_tab[k-1].select->
quick->index. The key definitions are
stored in an array of KEY structures start-
ing at join_tab[k-1].table->
key_info. The name of the key is stored
in the namemember of the KEY structure.

key_len The length of the key used in a query. This does not
have to be the full length of the key—it is possible to
use only a key prefix.

See the explanation for the key field on how
to locate the key definition structure. The
length of the key being used is the key_
length member of the KEY structure.

ref A list of fields from other tables whose values are
involved in an index lookup in this table.

join_tab[k-1].ref.key_copy

rows Average estimated number of records in this table to be
retrieved on each join iteration.

join_tab[k-1].best_positions.
records_read

Extra Additional comments on the optimization strategy. See
the section “Extra field” for details.

Collected from a number of the join
descriptor data members.

Table 9-1. Relationship between EXPLAIN and elements of the source code (continued)

EXPLAIN field Description Source code element

180 | Chapter 9: Parser and Optimizer

DEPENDENT UNION
Same as the UNION, except in a dependent subquery. A subquery is considered
dependent on the outer select if the optimizer thinks it could possibly use the
information that will change for each row of the outer select. This, unfortu-
nately, means that the optimizer will rerun the subquery for each row of the
outer select. Example:

SELECT * FROM orders WHERE customer_id IN (SELECT id FROM customer WHERE state =
'NV' UNION SELECT id FROM customer WHERE state = 'AZ')

UNION RESULT
Result of a union. Example:

SELECT id FROM customer WHERE state = 'NV' UNION SELECT id FROM customer WHERE
state = 'AZ'

SUBQUERY
A nondependent subquery. The optimizer sees that it only needs to run it once.
Example:

SELECT * FROM orders WHERE customer_id = (SELECT id FROM customer WHERE
fname='Paul' AND lname='Jones')

DEPENDENT SUBQUERY
A dependent subquery. The optimizer thinks it needs to run it once for every
row of the outer query. Note that even though it may not be necessary to do so,
the optimizer may merely fail to notice the independence of the subquery. This
happens in the following example:

SELECT * FROM orders WHERE customer_id IN (SELECT id FROM customer WHERE state =
'NV')

DERIVED
A select to create a derived table. A table is called derived if it is generated from
the result set of another query. In the SQL standard such tables are called “sub-
query in the FROM clause.” In the following example, the wy table is derived:

SELECT count(*) FROM orders,(SELECT id FROM customer WHERE state='WY') wy WHERE
wy.id = orders.customer_id

Record access types

This section describes the types of selects that can be indicated by the select_type
field in the output of the EXPLAIN command.

system
A special case when the table has only one record.

const
The table has at most one matching row, which is read only once at the start of
the query. This happens when the table has a unique key and the WHERE clause
supplies a value for it. In the following example, we assume that id is a unique
key in customer:

SELECT * FROM customer WHERE id = 32

Optimizer | 181

eq_ref
Similar to const, except the value is not a fixed constant but instead is taken
from another table. Only one record is retrieved. Therefore, the key has to be
unique. In the following example, eq_ref is used to look up the values of
customer.id on the primary key using the values of order.customer_id:

SELECT DISTINCT customer.id FROM customer,orders WHERE customer.id =
orders.customer_id AND orders.payment_status = 'FAILED'

ref
Similar to eq_ref and const in that only one value is used for key lookup. How-
ever, it is possible to retrieve more than one record. This happens either when the
key is not unique, or when only the prefix of the key is available. For example:

SELECT count(*) FROM customer WHERE last_name = 'Johnson'

ALL
Full table scan. Happens when no key constraint can be used, and the optimizer
needs to read columns that are not covered by an index. In the following exam-
ple, we assume that customer does not have a key that spans first_name, last_
name, and state:

SELECT first_name,last_name,state WHERE first_name='James' AND
last_name='Johnson' AND state='IN'

range
The records will be read via an index using one or more range constraints. This
record access method is possible only for range-capable keys. B-tree keys are
range capable, while hash keys are not. In the following example, we assume
customer has a range-capable key on last_name:

SELECT last_name,first_name FROM customer WHERE last_name > 'B' AND last_name < 'P'

index
The whole index will be scanned. This is not an efficient use of the index and
means the user did not employ the index well. Nevertheless, it is the best the
optimizer can do with the query the user provided. There were no constraints on
the index values, which would have reduced the number of values to read. While
using the whole index, the scan will access only the parts of the record covered
by the index. This kind of index scan can be more efficient than the full table
scan if the index covers only a small part of the entire record. In the following
example, we assume that customer has a key spanning last_name:

SELECT last_name FROM customer

fulltext
The optimizer uses a full-text matching method to retrieve records. This is possi-
ble only for full-text capable keys, which are currently implemented only in the
MyISAM storage engine. In the following example, we assume that customer has
a full-text key on description:

SELECT * FROM customer WHERE MATCH(description) AGAINST ('pays bills')

182 | Chapter 9: Parser and Optimizer

ref_or_null
Similar to ref except that a search for NULL values is additionally performed. In
the following example,we assume that last_name is a key that can contain NULL
values:

SELECT * FROM customer WHERE last_name = 'Johnson' OR last_name IS NULL

unique_subquery
Used to optimize IN with a subquery when the subquery selects unique key val-
ues. In the following example, we assume that id is a unique key in customer:

SELECT * FROM orders WHERE customer_id IN (SELECT id FROM customer WHERE
lname='Johnson')

index_subquery
Similar to unique_subquery, except that the index is not unique. In the following
example, we assume that customer_id is a non-unique key in orders:

SELECT * FROM customer WHERE id IN (SELECT customer_id FROM orders WHERE
product_id = 3)

index_merge
Two keys are being used separately, and the results are being merged. In the fol-
lowing example, we assume that the product table has a key on price and
another key on name:

SELECT * FROM product WHERE name='AMD Laptop' OR price=1300.00

Extra field

This section describes the strings that can appear in the Extra field in the output of
the EXPLAIN command.

Using where
The WHERE clause was evaluated to eliminate some records. This is necessary
unless the optimizer can detect that all of the records it is going to read on a key
will automatically satisfy the WHERE clause. In the following example, we assume
that price is not a key in product and we see Using where:

SELECT * FROM product WHERE price=1300.00

Note that if we were to add a key on price, Using where disappears. The opti-
mizer has requested a read on the price key of all the records with the price equal
to 1300.00. This automatically satisfies the WHERE clause.

Using index
The optimizer noticed that all of the columns it needed are contained in a key.
Therefore, it decided to scan just the key instead of the entire data. In the follow-
ing example, we assume that name is a key in product:

SELECT name FROM product WHERE name LIKE '%laptop%'

Optimizer | 183

Using index for group-by
The optimizer is able to optimize GROUP BY or DISTINCT by reading only the first
and/or the last record on a key for each distinct value. With GROUP BY this is pos-
sible only if there are no aggregate functions except MIN() and MAX(); the query
involves one table; all of the needed columns are covered by the index the opti-
mizer has chosen; and the order of the columns in the GROUP BY works with the
WHERE clause and/or the columns of MIN()/MAX() in such a way that the answer
can be given without having to look at all of the records of each distinct key
value. In the following example, we assume that product has a key on
(name,price):

SELECT name,MAX(price),MIN(price) FROM product GROUP BY name

Note that if we replace MAX(price) with COUNT(*), the same index is used, but the
Extra column now says Using index. The query is optimized in a different way
because COUNT(*) cannot be done without looking at all of the values in the
index. It needs to know how many there are, and the storage engine interface
currently does not provide a way for the optimizer to ask or for the storage
engine to communicate even if the value is being stored by the storage engine.

Using filesort
The optimizer was asked to retrieve the records in sorted order (ORDER BY), but its
record access method does not guarantee it. Therefore, post-sorting is required.
The term filesort refers to the MySQL sorting algorithm, which performs a radix
or quick sort on small chunks in the memory. If the entire record set to be sorted
does not fit into the sort buffer, the temporary results get stored in a file. Then
the merge step is performed on all chunks. In the following example, we assume
that product does not have a key on price:

SELECT * FROM product WHERE price < 1000.00 AND name LIKE 'AMD%' ORDER BY price

Note that if we add a key on price, the Using filesort message disappears. The
optimizer is able to use the key, and it will routinely retrieve the records in the
key order, thus eliminating the need for post-sorting.

Using temporary
The optimizer needs to create a temporary table to store an intermediate result.
For example, if a GROUP BY is done on a nonkey column, the optimizer creates a
temporary table with a unique key consisting of the GROUP BY expression. For
each record of the regular result set (omitting GROUP BY), an attempt is made to
insert it into the temporary table. If the insert fails due to the unique constraint
violation, the existing record is updated appropriately. Once the temporary table
has been populated, the result set is sorted and returned to the client. In the fol-
lowing example, we assume that product does not have a key on name:

SELECT name,COUNT(*) FROM product GROUP BY name

If we add a key on name, the need for using the temporary table disappears. GROUP
BY can now be done by traversing the key.

184 | Chapter 9: Parser and Optimizer

Distinct
The optimizer is able to eliminate records in a join, which is made possible by
the use of the DISTINCT keyword in the query. In the example, we assume that
orders has a key on product_id, that id is a unique key in product, and that the
optimizer puts orders first in the join order:

SELECT DISTINCT orders.product_id FROM orders,product WHERE orders.product_id =
product.id AND product.name LIKE '%AMD%' AND orders.customer_id = 1

Indeed, while there might be a number of records in orders that match the
orders part of the WHERE clause, it is sufficient to check the product part of the
WHERE clause only for each distinct value of product_id. Due to the nature of the
query, any two records with the same product_id in orders will have identical
product parts. Therefore, since the query asked only for distinct values of the
product_id, once the optimizer finds a unique value of product_id in orders that
matches the WHERE clause, it does not have to examine the rest of the records with
the similar value of the key, and it can move on to the next unique value in the
index instead.

Not exists
A special optimization is used during a left join to eliminate record combina-
tions. If a join is done on a column that is defined with the NOT NULL attribute in
the second table, and the WHERE clause requires that the column be NULL, the only
way this is possible is if the matching value of the first table column does not exist
in the second table. In the following example, we assume that orders.product_id
is defined as NOT NULL:

SELECT product.id FROM product LEFT JOIN orders ON product.id = orders.product_id
WHERE orders.product_id IS NULL

Indeed, it is not possible for orders.product_id to be NULL unless it is the special
record inserted into the left join product to mark that the ON clause failed to
match. Thus, even if only one ON clause match is discovered for a record in
product, the optimizer can safely move on to the next record in product without
examining all the other combinations of that record with the records in orders.

range checked for each record: (index map: N)
The optimizer did not find an index it is going to use all the time for the given
table. However, as the join progresses, certain record combinations in the pre-
ceding tables (in the join order) may permit either a range or index merge opti-
mization on some keys. Thus, the optimizer for each record combination in the
preceding tables checks to determine which index is best to use. In the example,
we assume that w2 has two indexes, one on s and one on s1:

SELECT count(*) FROM w1,w2 WHERE w2.s > w1.s AND w2.s1 < w1.s

In some cases, the optimizer may choose to use the index on s, while other times
it may choose to use the one on s1. If the range is not very restrictive, the opti-
mizer may even choose to scan w2 instead. The choice depends on the value of

Optimizer | 185

w1.s. The value of N in index map: N is a hexadecimal (in version 5.0) expression
of the bitmap of the keys that are being considered in this optimization.

This optimization is expensive and fairly uncommon. It is more of an attempt to
rescue a sinking ship: a query that, without it, would be a complete perfor-
mance disaster. If the optimizer chooses it, it should be considered an invitation
to write a better query.

Using union()
This comment appears in the case of the index_merge access method. Two or
more keys are being used to retrieve the records, and the correct result can be
obtained via a sorted list merge of the results. In other words, the constraints for
each key are such that there is no need to sort the records from each index by
row ID: each key naturally produces a sorted list. Natural sorted order by row ID
is guaranteed when all of the parts of a key are known, or when the key is a clus-
tered primary key (in InnoDB and BDB tables).

In the following example, we assume that customer has a key on state and a key
on (lname,fname):

SELECT COUNT(state) FROM customer WHERE (lname = 'Jones' AND fname='John') OR
(state = 'UT')

Using sort_union()
This comment appears in the case of the index_merge access method. Two or
more keys are being used to retrieve the records, but the optimizer is not sure
that each key will naturally produce a sorted list. Thus, to eliminate the dupli-
cate rows, additional processing is required.

In the example, customer table has a key on state and on (lname,fname). It does
not have a key on lname:

SELECT COUNT(*) FROM customer WHERE (lname = 'Jones') OR (state = 'UT')

Since there is no key on lname, the (lname,fname) key has to be used. The opti-
mizer does not have a constraint that covers all of its parts, and the records
therefore are not necessarily ordered by row ID.

Using intersect()
This comment appears in the case of the index_merge access method. Two or
more keys are being used to retrieve the records, and the correct result can be
obtained via a sorted list intersection of the results. This optimization is very
similar to Using union() except that the result sets are intersected (AND opera-
tion) instead of combined (OR operation).

In the following example, we assume that customer has a key on state and a key
on (lname,fname):

SELECT COUNT(state) FROM customer WHERE (lname = 'Jones' AND fname='John') AND
(state = 'UT')

186 | Chapter 9: Parser and Optimizer

Using where with pushed condition
Prior to the introduction of NDB tables, the optimizer operated under the
assumption that reading a record from a table either on a key or via a scan
would, in the worst case scenario, have to access a local disk. Even if this was
not the case, there was not much else it could do; none of the existing storage
engines had the ability to prefilter the records. With the introduction of NDB, the
ability to prefilter became a necessity. NDB table access often results in network
I/O. Thus, the performance could be optimized a great deal if the storage engine
was smart enough to communicate a filtering constraint to a remote node.

If the storage engine supports it (currently only NDB does), the optimizer can
push a filtering constraint onto the condition stack of the storage engine
instance. In turn, the storage engine can use this additional information to opti-
mize record retrieval. In the example, table t is of type NDB and does not have a
key on column n:

SELECT * FROM t WHERE n=5

Range Optimizer
MySQL developers have put a lot of effort into optimizing queries with constraints
restricting the values of a key to a particular range. There is a module that is dedi-
cated to this particular purpose, which is called the range optimizer. The source code
of the range optimizer is found in sql/opt_range.h and sql/opt_range.cc with the entry
point in SQL_SELECT::test_quick_select().

The range optimizer supports the following optimizations.

Range

Regular range optimization occurs when the range of the key values is known for
only one key in the ascending key order. Example:

SELECT * FROM t WHERE key1 > 'a' AND key1 < 'b'

Regular range optimization can handle various key value combinations used in com-
bination with Boolean operators. It can also handle a variety of range constraint
operators. In the following example, table t1 has a key on (c1,c2):

SELECT * FROM t1 WHERE (c1 IN(5,6) AND c2 IN(1,2)) OR
(c1 = 15 AND c2 BETWEEN 1 AND 2) OR (c1 BETWEEN 20 AND 30)

The range optimizer will search the following set of intervals for the key (c1,c2):

(1,2)–(1,2); (1,6)–(1,6); (2,2)–(2,2); (2,6)–(2,6); (15,1)–(15,2); (20,–inf)–(30,+inf)

Note the capability to convert a constant into a degenerate interval.

This type of optimization is done by the class QUICK_RANGE_SELECT.

There is a special case of the range optimization when spatial keys are used. Those are
handled by a QUICK_RANGE_SELECT_GEOM, which is a superclass of QUICK_RANGE_SELECT.

Optimizer | 187

Index_merge

This is used when range constraints are available for more than one key, but the result
does not come in a sorted order, thus requiring additional processing. See the expla-
nation of Using sort_union() in the earlier section, “Extra field,” for more details.

Handled by the class QUICK_INDEX_MERGE_SELECT.

Range_desc

Similar to Range, except the records are read in the descending key order. Handled
by the class QUICK_SELECT_DESC.

Fulltext

Implements full-text key matching constraints. Handled by the class FT_SELECT.
Although there are no ranges in the full-text search, the code organization made the
range optimizer the most natural fit for the full-text optimization code.

ROR_intersect

Used when range constraints are available for more than one key, the result set
comes naturally in a sorted order in each key, and the final result is obtained via the
intersection of the results on each key. See the explanation of Using intersect() in
the earlier section, “Extra field.” Handled by the class QUICK_ROR_INTERSECT_SELECT.

ROR_union

Used when range constraints are available for more than one key, the result set natu-
rally comes in a sorted order in each key, and the final result is obtained via the
union of the results on each key. See the explanation of Using union() in the earlier
section, “Extra field.” Handled by the class QUICK_ROR_UNION_SELECT.

Group_min_max

Handles some special cases of MIN()/MAX() functions with a GROUP BY when several
keys have range constraints. Handled by the class QUICK_GROUP_MIN_MAX_SELECT.

Subquery Optimization
Currently, MySQL performs relatively few optimizations of subqueries. If it notices
that a subquery would return only one record for each evaluation, it evaluates the
query and replaces the whole subquery with a constant. It also attempts some rather
minor rewriting of subqueries in special cases. Other important optimizations are
still on the to-do list and are so far scheduled for version 5.2:

188 | Chapter 9: Parser and Optimizer

• Ability to cache the results of a subquery returning multiple records, and use
them instead of executing the subquery for each record combination.

• Ability to create and use appropriate keys in the temporary tables that store the
result of the FROM clause subqueries.

• Ability to create and use appropriate keys in the temporary tables storing the
result of subqueries from the WHERE clause.

• Support for dependent FROM clause subqueries.

• Ability to rewrite the join order during subquery optimization.

• Ability to modify the table with UPDATE/INSERT/DELETE using a subquery involv-
ing the same table.

The MySQL subquery optimizer at this point is very much a work in progress.

Core Optimizer Classes and Structures
The key structures and classes used by the optimizer are defined in sql/sql_select.h. If
you are interested in getting to know the optimizer internals, you should also
become familiar with the structures and classes from sql/opt_range.h. We will dis-
cuss the ones of the most critical importance.

JOIN

As we have mentioned already, every SELECT query in MySQL is considered a join. If
only one table is referenced, it is treated as a special case of one-table join. Thus, the
key class that describes the query plan for a SELECT query is called JOIN. You can find
its definition in sql/sql_select.h. Table 9-2 describes its most significant data mem-
bers and methods.

Table 9-2. Most significant members of JOIN class

Definition Description

JOIN_TAB* join_tab An array of JOIN_TAB descriptors for this query plan. See the
section “JOIN_TAB” that follows.

TABLE** table An array of table descriptors for this join.

uint tables Number of tables participating in the join. Also the cardinality of
the join_tab array.

uint const_tables Number of constant tables. A table is considered constant if it
contains at most one record, or if at most one record match is pos-
sible during a key lookup (the key is either primary or unique).

bool do_send_rows A flag indicating whether the results of this SELECT should be
sent to the client.

table_map const_table_map A bit mask showing which tables are constant.

ha_rows examined_rows Total number of records examined so far.

Optimizer | 189

JOIN_TAB

JOIN_TAB contains the information relevant to the optimization about each table
instance participating in a join. It is defined in sql/sql_select.h. Table 9-3 describes its
most significant data members.

POSITION positions[MAX_TABLES+1] Temporary storage array of table positions used for calculating
the best join order.

POSITION best_positions
[MAX_TABLES+1]

Keeps track of the currently known best join order during the
computation of best join order.

double best_read A relative cost metric of the join operation defined by best_
positions.

List<Item> *fields A list of columns in the SELECT statement.

THD *thd MySQL thread descriptor.

Item *having The HAVING expression tree.

SELECT_LEX_UNIT *unit Points to the current select lex unit. A select lex unit is either a sin-
gle SELECT or a union of SELECT statements.

select_result *result Result processing handler. Depending on its type, the result could
be sent to a client, to a file, written to another table, or be stored
in memory for further processing.

ORDER *order The ORDER BY expression tree.

ORDER *group_list The GROUP BY expression tree.

bool optimized A flag to avoid executing the optimizer twice.

JOIN(THD *thd_arg, List<Item>
&fields_arg, ulonglong select_options_
arg, select_result *result_arg)

Constructor. The arguments are the thread descriptor, a SELECT
column list, a bit mask of SELECT options, and a result set object
that handles the processing of the output rows. Really a wrapper
around init().

void init(THD *thd_arg, List<Item>
&fields_arg, ulonglong select_options_
arg, select_result *result_arg)

Pseudoconstructor. Its arguments are the same as the construc-
tor’s. It does the real work of initialization.

int prepare(Item ***rref_pointer_array,
TABLE_LIST *tables,
uint wind_num,COND *conds, uint og_num,
ORDER *order, ORDER *group,
Item *having, ORDER *proc_param,
SELECT_LEX *select, SELECT_LEX_UNIT
*unit)

Post-initialization of some internal structures. Necessary to call
before optimize(). Most of the arguments correspond to
members of the JOIN that require initialization.

int optimize() Determines the query plan. May create the first temporary table if
the query requires the use of temporary tables.

void exec() Executes the query plan and sends resulting rows to the client or
some other place determined by the logic of the query (see the
later section “select_result”).

int reinit() Prepares the structures for another call to exec().

void cleanup(bool full) Releases resources allocated during optimization and execution.

Table 9-2. Most significant members of JOIN class (continued)

Definition Description

190 | Chapter 9: Parser and Optimizer

select_result

select_result is a base class in the hierarchy of classes that deal with the output of a
SELECT query. It is defined in sql/sql_class.h. Its most important methods are shown
in Table 9-4. select_result has a number of derived classes, which are listed in
Table 9-5.

Table 9-3. Most significant members of JOIN_TAB

Definition Description

TABLE *table Table descriptor.

KEYUSE *keyuse Descriptor containing the information about which key is
used to retrieve records for this table instance, and in what
way.

SQL_SELECT *select Optimization data for the range optimizer. The type is
defined in sql/opt_range.h.

COND *select_cond Parts of the expression tree from the WHERE clause involving
this table. The type is an alias of Item.

Read_record_func read_first_record A pointer to a function that reads the first record from the
associated table in the join.

Next_select_func next_select A pointer to a function that executes the next SELECT query
in a chain of subselects.

READ_RECORD read_record Record reading descriptor. The type is defined in sql/structs.h.

double worst_seeks The worst possible cost of reading records from the table on a
key. Measured in comparison with the cost of reading a
record via table scan.

ha_rows records An estimate of the average number of records to examine in
this table per iteration of a join.

ha_rows found_records An estimate of the average number of records in this table
per iteration of a join that will match the query constraints.

ha_rows read_time The average cost per iteration of a join for this table in the
current query plan.

table_map dependent Bit mask of dependent tables. Table B is dependent on table
A if table A must precede table A in the join order of any pos-
sible query plan.

enum join_type type Indicates the record access method (path) used in the query
plan for this table.

TABLE_REF ref An auxiliary descriptor mostly containing the information
about the key being used for this table.

JOIN_CACHE cache Record cache used in full joins.

JOIN *join Main (parent) execution plan descriptor.

Optimizer | 191

SELECT Parse Tree
Prior to the introduction of subqueries, the SELECT parse tree was trivial. There was
no hierarchy to speak of since there could only be one SELECT. The introduction of
subqueries brought in this tree structure.

The base building block of a SELECT parse tree is the class st_select_lex_node defined
in sql/sql_lex.h. It serves as the base class for st_select_lex_unit and st_select_lex.
The former serves as a descriptor of a UNION, while the latter describes a single SELECT.

Table 9-4. Most signficant methods of select_result class

Definition Description

virtual int prepare(List<Item>
&list, SELECT_LEX_UNIT *u)

Performs preliminary intialization.

virtual bool send_fields
(List<Item> &list, uint flags)=0

Called by the optimizer when the list of the fields in the result set
becomes available.

virtual bool send_data
(List<Item> &items)=0

Called by the optimizer once for each row of data in the result set.

virtual void send_error
(uint errcode,const char *err)

Called by the optimizer when an error occurs during the generation of
the result set.

virtual bool send_eof()=0 Called by the optimizer when the result set has been fully generated to
report that there will be no more rows.

virtual void cleanup() Releases allocated resources.

Table 9-5. Descendants of select_result

Class name Class description

select_send Sends the result set to a regular client connected either through the
network or a local socket.

select_export Used by SELECT INTO OUTFILE. The results of the SELECT are writ-
ten to a local file.

multi_delete Used by multi-tableDELETE statements, such asDELETEt1.*,t2.*
FROM t1,t2 WHERE t1.id = 3 AND t2.t1_id = t1.id. In
order to execute this delete, a correspondingSELECT is performed with
the result being handled in a special way to make it a DELETE.

multi_update Used by multi-tableUPDATE statements, such asUPDATEt1,t2 SET
t1.flag=1 WHERE t1.id = 3 AND t2.t1_id = t1.id. In
order to execute this update a corresponding SELECT is performed with
the result being handled in a special way to make it an UPDATE.

select_singlerow_subselect Used for handling subqueries returning only one record.

select_exists_subselect Used for handling subqueries using ANY, EXISTS, IN, ALL, or SOME.

select_max_min_finder_subselect Used for ANY and ALL subquery optimization.

select_insert Used for handling INSERT INTO...SELECT statements.

192 | Chapter 9: Parser and Optimizer

Execution of a SELECT on the code level

The execution of a SELECT is dispatched to handle_select() from sql/sql_select.cc by
the parser after a number of initializations and checks. Unions are dispatched to
mysql_union() from sql/sql_union.cc, while single selects go to mysql_select().

The essence of executing a single SELECT consists of the following steps:

1. JOIN::prepare()

2. JOIN::optimize()

3. JOIN::exec()

4. JOIN::cleanup()

If a JOIN has already been executed with JOIN::exec(), and it needs to be executed
again, a call to JOIN::reinit() is necessary.

JOIN::prepare() performs numerous initializations, some of which are:

• A call to setup_tables() from sql/sql_base.cc to add additional information to
table lists needed by the optimizer.

• A call to setup_wild() from sql/sql_base.cc to expand wild cards (*) in field
names of queries such as SELECT * FROM t1.

• A call to setup_fields() from sql/sql_base.cc to resolve the field names and ini-
tialize the field lists with appropriate field descriptors.

• A call to setup_conds() from sql/sql_base.cc to process and reorganize the WHERE,
HAVING, and ON clause trees.

• A call to setup_order() and setup_group() to process and reorganize the trees of
ORDER BY and GROUP BY, respectively.

• Performs some transformations of subselects.

The purpose of JOIN::optimize() is to restructure the query in a more optimal way,
and determine the execution plan. Here are its highlights:

• A call to simplify_joins() from sql/sql_select.cc to convert outer joins to inner
joins whenever possible.

• A call to optimize_cond() to eliminate redundancies from the WHERE clause and
rewrite it to be more efficient.

• A call to opt_sum_query() from sql/opt_sum.cc to attempt to short-circuit the
execution of queries with aggregate functions (e.g., MIN(), MAX(),COUNT(), SUM())
and no GROUP BY.

• A call to make_join_statistics() to create the execution plan.

• A call to substitute_for_best_equal_field() to prune the ON expressions in the
joins.

Optimizer | 193

• A call to remove_const() to remove constants from ORDER BY and GROUP BY
expressions.

• A call to make_join_readinfo() to set up structures for reading records during
the query execution.

• An attempt to replace simple subqueries with constants.

• A call to create_tmp_table() to create a temporary table if needed.

The make_join_statistics() function performs the following operations:

• Initializes a number of members of the JOIN class, allocating memory as needed.

• Detects dependency relationships between tables, and initializes dependency
bitmaps.

• Calls update_ref_and_keys() to mark which keys can be used for record
retrieval.

• Detects constant tables (where no more than one record match is possible), and
sets up the constant table bitmap.

• Initializes statistical information on the number of records in each table, and key
cardinalities. May call get_quick_record_count().

• Calls choose_plan(), unless the join has been reduced to trivial (all constant
tables). choose_plan() tries all possible join order combinations to the pre-
defined depth level, and picks the most optimal one.

JOIN::exec() performs the actual execution of the query. Depending on the type of
select_result, the results may be sent to a client, a temporary table, a file, or an
internal processor (e.g., in the case of optimized subqueries). Here are some of its
highlights:

• A call to select_result::prepare2() for appropriate initializations.

• A call to select_describe() if the query is an EXPLAIN.

• Special handling of a SELECT with no tables.

• Special handling of a result set with no records via a call to return_zero_rows().

• For DISTINCT, GROUP BY, and ORDER BY queries that were not possible to optimize in
another way, a call to create_tmp_table() to create a post-processing temporary
table.

• A call to do_select() to perform the nested loop logic of a join.

JOIN::cleanup() releases all or some of the resources allocated in the initialization or
during the execution, depending on the value of the argument.

194

Chapter 10CHAPTER 10

Storage Engines 10

In this chapter we will discuss the most prominent storage engines within MySQL in
more detail. Unfortunately, due to the large number of different storage engines and
the complexity that some possess, we are not able to examine each one in sufficient
detail on the code level. Indeed, storage engines like MyISAM and InnoDB each
deserve their own thousand-page book. However, I will provide pointers to the
source for those who would like to learn more.

Different storage engines have different capabilities. Table 10-1 contains a compari-
son of different storage engines.

Table 10-1. MySQL storage engine comparison

MyISAM InnoDB Memory Merge NDB Archive Federated

Transactions No Yes No No Yes No No

Indexing B-tree,
R-tree,
full text

B-tree Hash,
B-tree

B-tree,
R-tree

Hash,

B-tree

None Depends on the
remote table
engine

Storage Local disk Local disk RAM Local disk Remote
and local
cluster
nodes

Local disk Remote

MySQLserver
instance

Caching Key cache Key and
data cache

N/A Same as
MyISAM

Key and
data cache

None Depends on the
remote table
engine

Locking Table Row Table Table Row Row Relies on the
remote table
engine

Foreign keys No Yes No No No No Depends on the
remote table
engine

Shared Aspects of Architecture | 195

Shared Aspects of Architecture
While there is a great degree of freedom in the implementation of a storage engine,
all storage engines must integrate with the main MySQL server code. As a result they
have a few things in common. Aside from having to support the basic concepts of
tables residing in a database, records, columns, keys, read and write operations, and
other aspects stipulated by the storage engine interface requirements, each storage
engine also inherits the features and properties from the core table manipulation
code. In other words, they get some functionality and architecture regardless of
whether they need it.

Regardless of the storage engine, all tables have one .frm file per table containing the
table definition with the column names, their types and sizes, key information, and
other table properties. A .frm file in essence gathers and stores the information from
CREATE TABLE. Up until version 5.1 the filename was always the same as the name of
the table, and it resided in a directory corresponding to the database name. Version
5.1 introduced a change. The table and database name are now encoded in build_
table_filename() in sql/sql_table.cc. Code reads and parses the files using openfrm()
from sql/table.cc, and writes to them using create_frm() from the same source file.

Regardless of the storage engine, the server reads the table definition from the .frm
file, and stores it in what is called a table cache. This way, the next time the table
needs to be accessed, the server does not have to reread and reparse the .frm file, but
rather can use the cached information.

MySQL server utilizes the mechanism of table locking. Thus, each storage engine can
either take advantage of this feature, or politely ask the table lock manager to always
grant a write lock, which bypasses the core code table locking. In that case, the stor-
age engine itself becomes responsible for ensuring consistency during concurrent
access.

MyISAM
The MyISAM storage engine has roots very far back in the history of MySQL. When
MySQL was first released, the original storage engine was ISAM. However, at that
time there was no abstraction of storage engines in the code that would be easily visi-
ble to a user or a developer trying to extend MySQL. When that abstraction was
introduced, ISAM was refactored and enhanced to become MyISAM.

MyISAM Architecture
MyISAM stores its data on a local disk. In addition to the .frm file common to all stor-
age engines, it uses two additional files: a datafile (.MYD), and an index file (.MYI).

196 | Chapter 10: Storage Engines

Datafile

The datafile has a fairly simple format. It is essentially a concatenation of table
records with some necessary meta information. There are two record formats: fixed
length and variable length.

A fixed length record begins with a record header. If the table does not have fields of
type BIT, the length of the header can be computed using the formula len = (8 + n)/8,
where n is the number of columns in the table that could possibly contain a NULL
value. The first bit in the record header indicates whether this record is valid or has
been deleted. If the bit is set (1), the record is valid; deleted records will have that bit
cleared (0). For a valid record, the subsequent bits indicate whether their corre-
sponding columns that could be NULL are actually NULL. After that, the remaining bits
of the header act merely as padding bits and have no meaning.

Having fields of type BIT (in MySQL 5.0.3 and higher) complicates the situation,
because in some cases bit values might be stored in the header as well. Thus, to com-
pute the length of the header, the n in the formula from the previous paragraph
should be increased by the number of bits being stored in the header. If a field is
defined as BIT(K), meaning that it stores k bits, the number of bits to be stored in the
header is k mod 8. For example, if the field is BIT(19), 3 out of those 19 bits are
stored in the header.

If the first bit of the header indicates the record has been deleted, the subsequent bits
serve as a pointer to the next deleted record in the deleted record chain. The deleted
record chain allows inserts to overwrite the old deleted records instead of appending
the new record to the end of file.

Immediately after the header, we find a concatenation of column values for the
record in the column order of the table. Integers and floating point numbers in the
record are stored in the little-endian (low byte first) order.

You can find the details of the fixed-length record storage in storage/myisam/mi_
statrec.c.

For records with variable length, the format is more complicated. The first byte con-
tains a special code describing the subtype of the record. The meaning of the subse-
quent bytes varies with each subtype, but the common theme is that there is a
sequence of bytes that contains the length of the record, the number of unused bytes
in the block, NULL value indicator flags, and possibly a pointer to the continuation of
the record if the record did not fit into the previously created space and had to be
split up. This can happen when one record gets deleted, and the new one to be
inserted in its place exceeds the original one in size. You can get the details of the
meanings of different codes by studying the switch statement in _mi_get_block_info()
in storage/myisam/mi_dynrec.c.

Shared Aspects of Architecture | 197

Index file

MyISAM index files are much more complex than the datafiles. In short, they con-
sist of a detailed header describing the various key and column properties, and con-
taining a large amount of meta information, followed by the actual key pages. The
basic structure is shown in Figure 10-1.

The header consists of the following section types: state, base, keydef, and recinfo.
The state and base sections occur only once, the keydef section is present once for
each key, and the recinfo section is present once for each field of each key. Note that
each record in the table starts with a special field that is used to mark deleted records
and NULL fields, and this additional field will also have its own recinfo section.

The state section gets written by mi_state_info_write() and is read by mi_state_
info_read() in storage/myisam/mi_open.c. It contains such information as key and
datafile length, timestamps, number of times the table was opened, number of keys,
number of deleted and actual records, pointers to the root key block for each key, as
well as many other parameters. In the code, the state section information is stored in
a MI_STATE_INFO structure, defined in storage/myisam/myisamdef.h.

The base section follows the state section. In many ways it is conceptually similar to
the state section. It stores the number of records in the table, total number of fields
(including the extra ones for dealing with NULL values and deleted records), various
limit values (such as maximum key length and maximum key block) length, and a
number of other items. The base section is shared among all threads accessing the
table, while each thread has its own copy of the state section. The base section is
written by mi_base_info_write() and read by my_n_base_info_read() in storage/
myisam/mi_open.c. The internal structure storing the data from the base section is
MI_BASE_INFO, defined in storage/myisam/myisamdef.h.

Figure 10-1. Structure of index (.MYI) file in MyISAM

Header

Key Block

state

base

keydef (key 1)

recinfo (key 1, field 1)

key

pointer

next leaf or
other data

198 | Chapter 10: Storage Engines

Following the base section, you may find one or more keydef sections—one per key.
Each keydef section begins with a relatively short header containing the number of
key parts, the type of key algorithm (B-tree or R-tree), special option flags, the block
length used for this key, and key length limits. Following that there are one or more
keyseg sections, one per column in the key. Each keyseg section contains the infor-
mation about the corresponding key part (or column). Keydef sections are written by
mi_keydef_write() and read by mi_keydef_read() in storage/myisam/mi_open.c. The
internal structure storing the data from the base section is MI_KEYDEF, defined in
storage/myisam/myisamdef.h.

Recinfo sections follow the keydef sections. Each recinfo consists of a field type code,
the field length, a flag indicating if the field value can be NULL, and the offset of the
NULL marker. keydef sections are written by mi_recinfo_write() and read by mi_
recinfo_read() in myisam/mi_open.c. The internal structure storing the data from
the base section is MI_COLUMNDEF defined in include/myisam.h.

Recinfo sections are followed by key blocks (pages). MyISAM supports two types of
storage structures, B-tree and R-tree. Thus, each block is a leaf of a B-tree or an R-
tree containing key values along with pointers to other blocks or offsets into the
datafile for the leaf nodes. Each block has a 2-byte header. The first bit is used to
indicate whether this is a leaf node (it is a leaf if the bit is cleared). The remaining
bits contain the size of the used portion of the block.

MyISAM Key Types
MyISAM supports three types of keys: regular B-tree, full-text (which uses a B-tree),
and spatial (which uses an R-tree).

B-tree keys

The B-tree is a very common storage structure, and the subject has been treated in
great detail in many other publications; therefore, we will only briefly visit the
MyISAM B-tree. Those interested in more detail should refer to mi_key.c, mi_search.c,
mi_write.c, and mi_delete.c in the storage/myisam directory.

A MyISAM B-tree consists of leaf and nonleaf nodes, or pages. By default, each page
is 1,024 bytes. It can be changed by testing the myisam_block_size variable. You can
distinguish a nonleaf node from a leaf node by looking at the highest bit of the first
byte of the page. It will be set for a nonleaf node.

Both leaf and nonleaf nodes contain key values and pointers to the record positions
in the datafile. Nonleaf nodes additionally contain pointers to child nodes. Key val-
ues in a node may be compressed by replacing a common prefix with a referencing
pointer.

Shared Aspects of Architecture | 199

Full-text keys

A full-text key is essentially a B-tree that stores a pointer to the record and the rele-
vancy weight for each word in each indexed column or set of columns. A full-text
key can be created with syntax similar to this:

CREATE FULLTEXT INDEX ft_ind ON t1(col1);

or any other variation of the standard index creation syntax adding the FULLTEXT
modifier. Once you have created a full-text index, you may use the myisam_ftdump
utility to view the details of the index with a command similar to:

$ myisam_ftdump -d /var/lib/mysql/test/t1 1

The first non-option argument is the full table path (datadir, database name, and
table name). The second is the number of the key. One way to get the key number is
to execute SHOW CREATE TABLE. Count the keys. The ordinal number of the index
minus 1 is the key number to be used with the utility. If the table has a primary key,
a full-text key, and no other keys, that number will be 1.

myisam_ftdump produces output similar to this:

 188 0.6668773 argument
 310 0.7772509 column
 310 0.7772509 columns
 188 0.6668773 count
 188 0.6668773 create
 310 0.7772509 created
 188 0.6668773 database
 188 0.6668773 datadir
 310 0.7772509 essentially
 188 0.6668773 execute
 188 1.1291214 full
 310 1.3160002 full
 188 0.6668773 index
 310 0.7772509 indexed
 188 1.1291214 keys
 188 0.6668773 minus
 188 1.7401749 number
 188 0.6668773 option
 188 0.6668773 ordinal
 188 0.6668773 path
 310 0.7772509 pointer
 188 0.6668773 primary
 310 0.7772509 record
 310 0.7772509 relevancy
 188 0.6668773 show
 310 0.7772509 similar
 310 0.7772509 stores
 310 0.7772509 syntax
 188 1.5913655 table
 188 0.6668773 text

200 | Chapter 10: Storage Engines

 310 1.3160002 text
 310 0.7772509 tree
 188 0.6668773 utility
 310 0.7772509 weight
 310 0.7772509 word

The first column shows the position (in bytes) of the start of the record containing
the search keyword in the datafile. The second column is a specially computed rele-
vancy rating. (Details are in walk_and_match() in storage/myisam/ft_nlq_search.c;
make sure to look up the GWS_IN_USE, GWS_PROB, and GWS_IDF macros in storage/
myisam/ft_defs.h.) The third argument is the search term.

Full-text SELECT. A full-text lookup essentially consists of performing a B-tree search in
the full-text index, finding the appropriate record positions, computing the rele-
vancy rankings of each record for the search with the help of the individual key word
relevancy values stored in the tree, and then ordering the records by the computed
record relevancy ratings. On the SQL level, the full-text functionality is available via
MATCH() ... AGAINST() syntax. In the following example, we assume that the table
documents has a full-text key on (title,body). We can use a query similar to this to
retrieve the results:

SELECT title,body FROM documents WHERE MATCH(title,body) AGAINST ('mysql internals')

Full-text INSERT. A full-text insert parses the appropriate columns of the record (see
storage/myisam/ft_parser.c), breaking it into a sequence of words. The stop words
(such as a, and, the) are ignored (see storage/myisam/ft_stopwords.c and storage/
myisam/ft_static.c). Word frequencies are computed, and eventually the relative
weight of each keyword in the record is obtained. Then the keywords with the
weights and the record position are inserted into the full-text index. See storage/
myisam/ft_update.c for details.

Spatial keys

The idea of a spatial key comes from the following type of problem. Suppose you
have the latitude and the longitude for every point of interest, and you would like to
determine which ones lie within a given bounding rectangle. In a practical applica-
tion, the points of interest could be restaurants, and the bounding rectangle could be
the zip code boundary.

With a traditional B-tree approach you could store the latitude and the longitude in a
table, and have a key on one or the other, or even a compound key containing both.
While this is better than a full scan, it is impossible to avoid the problem of not using
the ranges for both coordinates efficiently. You retrieve all the values for a range on
one, but the range of the other does not get used very well. Even with the introduc-
tion of index_merge optimization in MySQL 5.0, which permits the use of more than
one key in the same table during query optimization, a B-tree key remains less than
ideal for this type of problem.

Shared Aspects of Architecture | 201

In 1984, Antonin Gutman proposed an extension to a traditional B-tree to address
this challenge. The extended B-tree was given the name of R-tree, with R standing for
region. While a traditional B-tree node contains key values and pointers to child
nodes and/or actual records or pointers to actual records, the R-tree replaces the key
values with bounding boxes that contain all of the descendant nodes under the given
element of the node.

Due to the nature of an R-tree, a key value is a geometric object in an n-dimensional
space. In MySQL, in order to have an R-tree index, the column must be of the type
GEOMETRY, or there must be a way for MySQL to convert it to the GEOMETRY type. Thus,
to create an index on a column in table stores named gps_coord of the type GEOMETRY,
use the following syntax:

CREATE SPATIAL INDEX sp_ind ON stores(gps_coord)

To insert a record with the gps_coord of (–110.5, 40.5), use the following syntax:

INSERT INTO stores (id,gps_coord) VALUES (1,GeomFromText('POINT(-110.5 40.5)')

To retrieve all records in a rectangular region with the vertices (–111,40), (–111,41),
(–110,41), (–110,40), you can use the following syntax:

SELECT id, AsText(gps_coord) FROM stores WHERE
MBRContains(GeomFromText('POLYGON((-111 40,-111 41,-110 41,-110 40,-111 40))'),
gps_coord)

Note that the bounding polygon does not have to be rectangular, nor do the GEOMETRY
column values have to be points. In fact, the same column can contain points, lines,
polygons, and other geometric objects.

The insertion algorithm (see rtree_insert_req() in storage/myisam/rt_index.c)
searches through a node (starting at the root) for the bounding box that would be
extended the least if it were combined with the search key (see rtree_pick_key() in
storage/myisam/rt_index.c). The measure of extension can be defined in two ways: by
area (in the n-dimensional sense) or by perimeter. By default, the extension by area is
used. However, it is possible to compile MySQL to use the extension by perimeter by
adding -DPICK_BY_PERIMETER to the compiler flags.

Once the right bounding box is found in the node, the child node is examined the
same way until a leaf node is reached. The insertion is performed (see rtree_add_
key() in storage/myisam/rt_key.c). The upper-level bounding boxes are appropri-
ately updated (see rtree_set_key_mbr() in storage/myisam/rt_key.c). If the node is
full, it needs to be split.

The split is done in rtree_split_page() from storge/myisam/rt_split.c. First, all pairs
of keys (bounding boxes) are examined to find the pair that will waste the most area
(in the n-dimensional sense) if joined. The wasted area is calculated as the area of the
minimum bounding box of the union minus the sum of the areas of each key in the
pair (see pick_seeds() in storage/myisam/rt_split.c). Each is put in a separate group.

202 | Chapter 10: Storage Engines

Then the remaining keys are assigned. Each key that has not yet been selected is
hypothetically added to both groups. The algorithm then calculates the increase in
the area of the minimum bounding box for each group that results from the addi-
tion, and compares the increases. The difference of increases serves as a measure of
the preference of this key for one group or the other. The one with the greatest mea-
sure of preference is chosen to join the group for which it produces the smaller
increase in the minimum bounding box area. The process is repeated until all keys
are assigned (see pick_next() in storage/myisam/rt_split.c).

This split algorithm is called quadratic-cost split because its complexity is 0(N2) with
respect to the number of keys in the node. There exist faster split algorithms (linear-
cost), and slower (exhaustive split). A slower algorithm produces more balanced
trees. The quadratic cost algorithm is a nice trade-off between keeping a balanced
tree and maintaining a good insertion speed.

The R-tree search is very similar to the B-tree search. Start at the root node. Although
the match is not found, we scan the current node until we find a bounding rectangle
of interest, which in the simplest case will contain the search rectangle. Descend into
the matching node unless we are at a leaf. If at a leaf, follow the record pointer to
retrieve the record. See rtree_find_first(), rtree_find_next(), and rtree_find_req()
in storage/myisam/rt_index.c, as well as rtree_key_cmp() in storage/myisam/rt_mbr.c.

To delete a record, the search key is found and removed from the leaf node. Then, if
that makes the node less than one-third full, the whole node is removed and placed
into the reinsert list along with its descendants. The matching key is also deleted
from the parent node, and the deletion is propagated in this manner upward. When
the deletion is complete, the reinsert list is processed to restore the removed key val-
ues into the tree. See rtree_delete(), rtree_delete_req(), rtree_fill_reinsert_
list(), and rtree_insert_level() in storage/myisam/rt_index.c for details.

InnoDB
InnoDB is one of the most complex storage engines currently present in MySQL. It
supports transactions, multi-versioning, row-level locks, and foreign keys. It has an
extensive system for managing I/O and memory. It has internal mechanisms for
deadlock detection, and performs a quick and reliable crash recovery. It implements
a number of algorithms to overcome the performance limitations of traditional data-
bases that support transactions.

Unlike MyISAM, which always stores its data in files, InnoDB uses tablespaces. A
tablespace can be stored in a file or on a raw partition. All tables may be stored in
one common tablespace, or every table may have its own tablespace.

The data is stored in a special structure called a clustered index, which is a B-tree
with the primary key acting as the key value, and the actual record (rather than a
pointer) in the data part. Thus, each InnoDB table must have a primary key. If one

InnoDB | 203

is not supplied, a special row ID column not normally visible to the user is added to
act as a primary key. A secondary key will store the value of the primary key that
identifies the record. The B-tree code can be found in innobase/btr/btr0btr.c.

Both primary and secondary keys are stored in a B-tree on disk. However, when buff-
ering the index page, InnoDB will build an adaptive hash index in memory to speed
up the index lookups for the cached page. The code that deals with InnoDB adap-
tive hashing can be found in storage/innobase/ha/ha0ha.c.

While MyISAM buffers only the key pages, InnoDB buffers both keys and data. This
approach has both advantages and disadvantages. On one hand, the buffering of the
data does not have to depend on the operating system’s file cache, and good perfor-
mance is achieved even when there is something wrong with the operating system’s
file caching. Additionally, in comparison with the operating system’s file cache,
accessing the data avoids an extra system call. On the other hand, with the operating
system’s file cache still enabled, double caching (the same data being cached in the
operating system’s file cache and in the data buffer) is possible, which only wastes
memory. However, the operating system’s file caching can be disabled by starting
InnoDB with innodb_flush_method set to O_DIRECT. The code that deals with the data
and key buffering is found in storage/innobase/buf/buf0buf.c.

The InnoDB engine keeps two types of logs: an undo log and a redo log. The pur-
pose of an undo log is to roll back transactions, as well as to display the older ver-
sions of the data for queries running in the transaction isolation level that requires it.
The code that handles the undo log can be found in storage/innobase/log/log0log.c.

The purpose of a redo log is to store the information to be used in crash recovery. It
permits the recovery process to re-execute the transactions that may or may not have
completed before the crash. After re-executing those transactions, the database is
brought to a consistent state. The code dealing with the redo log can be found in
storage/innobase/log/log0recv.c.

An InnoDB data row can come in two different formats: an old, less compact one
(pre 5.0.3), and a new, more compact one (version 5.0.3 and later). Both formats
store mostly the same information, but the new one uses less space. The record
begins with a list of field data offsets in the record. Next come 4 bits used for mark-
ing the record as deleted and for other purposes; 4 bits to show the number of
records owned by this record; and 13 bits for the heap number of the record. The old
format has 10 bits containing the number of fields in the record, followed by a bit
showing whether the field offsets use 1 byte or 2. The new format has 3 bits with the
record type. Both formats follow with a 2-byte next-key pointer. The remainder of
the record contains the actual field data. The code that deals with the record format
and operations can be found in storage/innobase/rem/rem0rec.c.

The complexity of the record format is necessary to optimize the insert operation. A
conventional B-tree would require moving half of the records on average when a new
record is inserted. InnoDB tries to avoid that with a very creative approach. The

204 | Chapter 10: Storage Engines

records are inserted into a page in the natural order. The heap number indicates the
sequential order of the record in the page. The next key pointer indicates the posi-
tion of the next record in the primary key order.

To locate keys in a page efficiently, InnoDB maintains an additional structure known
as the page directory. It is a sparse sorted array of pointers to keys within the page. A
given record is located via a binary search. Afterward, since the index is sparse, it
may still be necessary to examine a few more keys in the linked list of records. The
number of records owned indicates how much further to go before the next record
that has a pointer to it from the page directory is reached, and thus contains the
information when the search for a given key stops. The code dealing with InnoDB
pages can be found in storage/innobase/page/page0page.c.

Each InnoDB data row has two additional internal fields storing the information to
be used in transactions, recovery, and multi-versioning. One field is 6 bytes long and
contains the ID of the last transaction that modified the record. It also contains a 7-
byte field known as a roll pointer. The roll pointer points to the record in the roll-
back segment in the undo log. This pointer can be used to roll back a transaction, or to
show the older version of the data if the current transaction isolation level requires it.

Memory (Heap)
The MEMORY storage engine, formerly known as HEAP, stores its data in memory.
The original purpose of the code was for the optimizer to be able to create and use
temporary tables when performing a SELECT that could be done in one pass. After the
introduction of the storage engine architecture in version 3.23, it became fairly easy
to give users access to this in-memory table engine that was being used for tempo-
rary tables.

This simple addition has provided numerous benefits to MySQL users. An in-memory
table can be used to store temporary results when executing a complex set of queries;
as a fast data accumulator that gets periodically flushed to disk; as a fast cache for a
portion of the data from some large disk-based table; and in many other ways.

The MEMORY engine supports two types of keys: hash and B-tree. The definition of
the table is stored if the server is restarted. However, the data rows are present only
for as long as the server is running, and they are lost after a restart.

A hash index lookup is faster than a B-tree one if the exact value of the key is known.
However, if only the prefix of the key value is known, or only the limit values of a
range are known, a hash index is of no help. A B-tree, however, can answer such
requests via the index.

A MEMORY table is generally faster than a similar MyISAM table on most opera-
tions. However, if the MyISAM table is small enough to fit into the file cache of the
operating system, the difference is not as big as you might expect: perhaps a factor of

NDB | 205

1.5 or so. MEMORY table speed gains come from two sources: a simpler algorithm
and the absence of I/O syscalls.

Those interested in learning more about the MEMORY tables should refer to sql/ha_
heap.h, sql/ha_heap.cc, and the .c and .h files in the storage/heap directory.

MyISAM Merge
The MERGE storage engine combines a group of identically structured MyISAM
tables into one logical unit. Reads and writes can still happen to and from one of the
MyISAM tables, or to and from the MERGE table.

The MERGE engine was created to solve a very common problem. Suppose your sys-
tem collects some historical data over time. Most of the queries are restricted to a
fairly narrow and easily predictable time range. However, once in a while you need
to query the whole table. If you had all of the data in one MyISAM table, you would
not get very good performance for a number of reasons: lock contention, increased
unnecessary I/O, or long repair times in case of a crash. Having all of the data in sep-
arate tables based on the time makes those queries that need to see more than one
table unnecessarily complex.

A MERGE table provides a good solution. You can now query individual tables
when the time range is sufficiently narrow, and the MERGE table when it is not. For
more information on MERGE, refer to sql/ha_myisammrg.h, sql/ha_myisammrg.cc,
and the .c files in the storage/myisammrg directory.

NDB
The NDB acronym stands for Network DataBase. This storage engine is capable of
storing the data on a fail-safe cluster of database servers. In 2003, MySQL AB
acquired the division of Ericsson (a Swedish telecom company) that had developed
the NDB code to handle Ericsson’s phone system, and started the work on integrat-
ing it into MySQL.

A running MySQL server provides a central point of access to the NDB cluster. The
queries are parsed by the MySQL parser, and passed on to the optimizer. Then, if the
table storage engine is NDB the appropriate methods of the NDB handler class are
invoked as the query is being executed (see sql/ha_ndbcluster.h and sql/ha_
ndbcluster.cc). At that time, the calls to the handler class method are translated into
NDB, API calls (see the .hpp and .cpp files in the ndb/src/ndbapi directory), which in
turn communicate with the cluster nodes.

The cluster nodes are divided into two types: management nodes (ndb_mgmd), and data
nodes (ndbd). The management node is responsible for controlling the cluster. The
data node stores and replicates the data.

206 | Chapter 10: Storage Engines

NDB supports transactions, row-level locking, B-tree and hash keys, internal syn-
chronous replication two-phase commit (separate from MySQL server replication),
and data partitioning based on the primary key. Each data node loads its entire
dataset into memory on startup, and writes it to disk on shutdown. There are peri-
odic asynchronous writes to disk to ensure that not much gets lost in case of a cata-
strophic failure of the entire cluster (e.g., the power goes down on all nodes at the
same time). The idea is that if you have a large dataset, you can set up enough data
nodes to have enough combined memory to operate the cluster this way. There is
some work in progress to support operating the cluster from disk.

As one would expect, the performance of NDB greatly depends on the speed of the
network that connects the cluster nodes. The NDB cluster can use TCP/IP over
Ethernet, or be connected via SCI bus and use SCI sockets. If the nodes are on the
same computer, shared memory can also be used. Although using SCI can provide
significant speed gains, TCP/IP over Ethernet is by far the simpler and the better
tested method.

It is important to remember that NDB was created for a particular purpose (to meet
the needs of a large telephone database application), which it has fulfilled very well.
It is well suited for similar applications that follow a similar design philosophy. How-
ever, it has a fairly extensive list of limitations and still has a long way to go before
you could set up a cluster, run ALTER TABLE ...ENGINE=NDB for all of the tables, and
expect any application to just work.

Archive
The purpose of the ARCHIVE storage engine is to provide the functionality to store
large amounts of data using the minimum amount of space. The idea is to compress
and archive away the data but still be able to query or append to it on occasion with
minimum hassle. This engine was created during several inspired coding sessions by
Brian Aker, the Director of Architecture at MySQL AB. Brian has an amazing ability
to code up something very useful in a very short amount of time in between his other
responsibilities.

Compared to MyISAM, InnoDB, or NDB, this is a very simple storage engine. It sup-
ports only two operations: SELECT and INSERT. This simplification has great benefits.
Deleting or updating a record in a compressed datafile is a very costly operation. Not
having to worry about updating and deleting data permits you to keep the records in
a compressed format. Additionally, such a limitation makes tampering with the
existing data difficult: the only way to delete or update a record is to change it to
another storage engine, run the modification query, and then change it back to the
ARCHIVE storage engine. With no need to worry about updates and deletes, solv-
ing the issue of high-performance concurrent access is easy. Since the datafile can

Federated | 207

have no holes from record deletions, INSERT and SELECT operations can proceed con-
currently unless the SELECT tries to read the record that is currently being written at
the end of file. Thus, the ARCHIVE engine provides the effect of having row-level
locks as far as performance is concerned.

The ARCHIVE storage engine currently does not support keys. There is some discus-
sion among MySQL developers that they might be supported in the future.

The source code of the ARCHIVE storage engine is found in storage/archive direc-
tory. A reader interested in implementing his own storage engine is well advised to
study this code. It is simple enough to be fairly easily understood, and yet accom-
plishes enough to be useful as a next step for the examples we’ve covered thus far.

Federated
This is another simple storage engine, and again the fruit of Brian Aker’s coding
inspiration. Its purpose is to allow access to tables stored on a remote MySQL server
as if they were local.

The FEDERATED storage engine stores the information about how to access the
remote server, and which table to map to in the comments field of the CREATE TABLE
statement. This information is stored in the .frm file. There are no other datafiles cre-
ated or used by this storage engine. When the optimizer requests the data from the
storage engine, the storage engine in turn issues an SQL query to the remote server
using the regular MySQL client/server communication protocol, and retrieves the
data from the remote table. When processing queries that update the table, the stor-
age engine translates them into corresponding update queries on the remote server,
and also sends them via the standard client/server protocol.

This storage engine also serves as a very good learning example. You can find its imple-
mentation in storage/federated/ha_federated.h and storage/fedrated/ha_federated.cc.

208

Chapter 11CHAPTER 11

Transactions 11

In the MySQL architecture, the majority of the burden for implementing transac-
tions is placed on the storage engine. The details of transaction logging, row or page
locks, implementing the isolation levels, commits and rollbacks, and other critical
components of transaction implementations vary greatly from storage engine to stor-
age engine. However, every storage engine has to use the same interface to communi-
cate with the upper SQL layer. Thus the focus of this chapter will be to outline how
to integrate an already existing transactional storage engine into MySQL.

InnoDB is the most robust transactional storage engine in MySQL. Therefore I will
use it as an example and analyze why things are done a certain way.

Overview of Transactional Storage Engine
Implementation
Chapter 7 discussed the basics of implementing a storage engine. As you may recall,
there are two parts to integrating a custom storage engine into MySQL: defining and
implementing the handler subclass, and defining and implementing the handlerton.
We discussed these in a fair amount of detail.

While the proper implementation of transactions definitely requires a great attention
to detail in implementing the virtual methods of the handler subclass, the core of the
transaction-specific work happens in a few handlerton functions. This is understand-
able: the handler subclass methods are conceptually associated with a particular
table instance, while the handlerton functions are associated only with the thread or
connection. Thus, operations such as COMMIT, ROLLBACK, and SAVEPOINT naturally fit
into the handlerton mode of integration.

It is important to understand that the task of the actual implementation of transac-
tions essentials is left completely to the discretion of the storage engine. It is possible

Implementing the handler Subclass | 209

to have a full-fledged transactional storage engine such as InnoDB, or you could just
write a prototype that reports that it committed or rolled back a transaction but in
essence did nothing. The core SQL layer will not know the difference as long as you
follow the proper interface/communication protocol.

Even if you already have a fully functional transactional storage engine, the process
of integration is not trivial. There are a number of issues to deal with. How do you
work with nontransactional or even transactional tables belonging to another stor-
age engine? How do you handle the possible caching of queries? How do you handle
replication logging? How do you avoid deadlocks?

If you look at the source code of InnoDB (starting in sql/ha_innodb.cc), you will notice
many of the struggles that such an integration involved. You will also see solutions to
the various challenges that you can try to understand and apply to your situation.

Implementing the handler Subclass
The first simple but very important method to implement is handler::has_
transactions(). It is used to report to the upper SQL layer that the storage engine
has transactional support. The return value of 1 (TRUE) is interpreted as the positive
answer.

The next two methods of importance are handler::start_stmt() and handler::
external_lock(). They both can be used by a transactional storage engine to start a
transaction.

handler::external_lock() is invoked at least once per table instance during parsing.
Originally, the purpose of this method was to prevent a table that could have been
used by some application outside of MySQL server from being modified. This use of
handler::external_lock() is now rather obsolete. However, its strategic position in
the hierarchy of calls makes it very useful for transactional storage engines to per-
form per-table-instance initializations to start a transaction.

The one exceptional condition when a transaction can be started by passing a call to
handler::external_lock() is the LOCK TABLES statement, which places a manual table-
level lock on a list of tables to be used in the current connection session. To deal
with this problem, the handler::start_stmt() method was added to the handler
class, which is invoked once per table instance during LOCK TABLES.

A transactional storage engine will usually need a data structure to keep track of the
state of the current transaction. The MySQL storage engine architecture meets this
need by allocating memory for a pointer to the transaction descriptor in the THD class.
That memory is found in the ha_data array under THD. Each storage engine gets a
location at a fixed offset in that array, specified by an autogenerated value that is
placed in the slot member of the handlerton.

210 | Chapter 11: Transactions

That memory location can be initialized when a transaction is started by handler::
external_lock() or handler::start_stmt(). As an example, this is how InnoDB ini-
tializes it:

trx = trx_allocate_for_mysql();
...
thd->ha_data[innobase_hton.slot] = trx;

When a transaction is started, the storage engine needs to register it in the core SQL
layer via a call to trans_register_ha(). In the case of InnoDB, this requirement is
met via two functions: innobase_register_stmt() and innobase_register_trx_and_
stmt(). innobase_register_stmt() calls trans_register_ha() as follows:

trans_register_ha(thd,FALSE,&innobase_hton);

whereas innobase_register_trx_and_stmt() first calls innobase_register_stmt() and
then invokes trans_register_ha() as follows:

trans_register_ha(thd,TRUE,&innobase_hton);

As you can see, the difference is in the value of the second argument. If it is FALSE,
only the current statement of the transaction is registered. Otherwise, the entire
transaction is registered.

The purpose of registering transactions and statements is to facilitate the COMMIT and
ROLLBACK operations. While the operation is in progress, the core server code needs to
locate the handlertons to be able to invoke the storage-engine-specific code.

A transaction may be started in two ways, externally or internally. A transaction is
started externally when the client issues a statement BEGIN or START TRANSACTION.
Alternatively, merely issuing a query that uses a transaction-capable storage engine
table starts a transaction internally. When a transaction starts externally, the upper
SQL layer has control and can record the current state of the storage engine if
needed. However, when the transaction starts internally, the upper SQL layer does
not have control. Thus, the transaction registration process serves to notify the upper
SQL layer of times when transactions start internally.

A transactional storage engine may also implement handler::try_semi_consistent_
read(), handler::was_semi_consistent_read(), and handler::unlock_row() to help
avoid extra lock waits in UPDATE and DELETE queries.

For the most part, however, the implementation of the handler subclass is very much
storage-engine-dependent. The core of the work to implement the handler is defin-
ing what it means to read a record via various methods (on a key, read next row in a
scan, read from a range, etc.), and to write, update, and delete a record. So the han-
dler methods themselves normally would not do much related specifically to transac-
tion support. Rather, they serve as wrappers for the lower-level engine API calls that
take care of transactional integrity as they store and retrieve the records.

Let us briefly examine how InnoDB implements the handler (see sql/ha_innodb.cc).
There is a lot of work—mostly not related to transactions—required to bridge the

Implementing the handler Subclass | 211

gap between the native InnoDB structures and the data that comes from the MySQL
upper SQL layer in its native format, which was originally designed with MyISAM in
mind. We see calls to core InnoDB API functions such as row_search_for_mysql(),
row_unlock_for_mysql(), row_insert_for_mysql(), row_update_for_mysql(), and a
number of others. As their names suggest, those functions have a common theme:
they take a record in MySQL upper SQL layer format, perform the necessary format
conversions, and then perform their respective operations such as searching for a
record, updating a record, or inserting a record. These and other format bridging
functions can be found in storage/innobase/row/row0mysql.c.

One of the key data members of ha_innobase (the InnoDB handler) that is heavily
involved in the operations to bridge the formats (as well as just about any other oper-
ation done inside the InnoDB handler) is innobase_prebuilt, which has the type
struct row_prebuilt_struct*. This is a pointer to a structure that organizes InnoDB
table data in a way to be able to perform operations using records in the MySQL
upper SQL layer format most efficiently. It is initialized in ha_innodb::open() via a call
to row_create_prebuilt().To study the internals of InnoDB, which can give you ideas
for how to integrate transactional engines, refer to the definition of row_prebuilt_
struct in storage/innobase/include/row0mysql.h, as well as the initialization in row_
create_prebuilt() in storage/innobase/row/row0mysql.c. There is one member in this
structure that deserves more detailed attention, though: trx of type stuct trx_struct*.

trx is a pointer to a transaction descriptor that includes data such as transaction ID;
transaction isolation level; whether the transaction created or dropped a table or an
index; log serial number of the transaction at the last commit; log name and offset in
the binary replication log corresponding to the transaction; and a variety of other
flags, count holders, and descriptor pointers relevant to processing a transaction.
InnoDB places the trx pointer into the memory slot under THD that is provided for
the main transaction descriptor (thd->ha_data[innobase_hton.slot]).

This structure may be of particular interest to those trying to integrate their own
transactional storage engine. The definition of trx_struct can be found in storage/
innobase/include/trx0trx.h. It is initialized via trx_create() in storage/innobase/trx/
trx0trx.c. However, when it is called from within the handler, InnoDB uses the trx_
allocate_for_mysql() wrapper rather than calling trx_create() directly.

Most of the record manipulation methods (rnd_next(), index_first(), index_next(),
index_prev(), and so on) of ha_innobase follow a pattern. They start with some usu-
ally simple initialization, followed by a call to ha_innobase::general_fetch(), which
in turn dispatches the execution into the depths of the InnoDB API, usually entering
via one of the functions in storage/innobase/row/row0mysql.c. Transactional issues
are dealt with in stride as they arise. Other operations, such as opening or creating a
table, also follow a pattern. There is usually a lengthy initialization followed by a call
to a core InnoDB API function, which in turn is followed by some cleanup.

Overall, studying the implementation of the InnoDB handler reveals the complexity
involved in integrating a powerful transactional storage engine into MySQL.

212 | Chapter 11: Transactions

Defining the handlerton
As you may recall from Chapter 7, a handlerton is a structure with data members and
callback function pointers specific to a storage engine. Unlike the handler class, a
handlerton is not specific to a table instance. A singleton is a well-known design pat-
tern that applies when a class is created is such a way that only one instance of it can
exist through the whole application. A handlerton is in essence a singleton that is
connected to a table handler, hence the name.

If you look at the listing of the handlerton function callbacks in Chapter 7 (Table 7-3),
you’ll see that most of them have something to do with transactions. The introduction
of the handlerton initiated from the need to support XA transactions, which have caused
a major refactoring of the transaction handling within MySQL. Thus, the handlerton
became a crucial hub of transaction capability integration for storage engines.

The transaction-specific callbacks of a handlerton are:

savepoint_set()
savepoint_rollback()
savepoint_release()
commit()
rollback()
prepare(
recover()
commit_by_xid()
rollback_by_xid()

These functions are invoked in direct response to their corresponding SQL com-
mands. Other callbacks are also utilized by transactional storage engines:

close_connection()
panic()
flush_logs()
start_consistent_snapshot(),
binlog_func()
release_latches()

Let’s briefly examine the InnoDB handlerton in sql/ha_innodb.cc. The naming conven-
tion for the callbacks is fairly straightforward. Each handlerton member is prefixed with
innobase_ to form the name of the actual InnoDB callback. There are a few exceptions:

• prepare() and recover() are called innobase_xa_prepare() and innobase_xa_
recover(), respectively, for greater clarity and to emphasize that they are deal-
ing with XA transactions.

• panic() corresponds to innobase_end().

• start_consistent_snapshot() points to innobase_start_trx_and_assign_read_
view().

Working with the Query Cache | 213

Some handlerton callbacks follow a simple pattern. They have some initialization, a
call to a core InnoDB API function to actually do the job, and then possibly some
cleanup afterward. Other callbacks require several calls to the core InnoDB API. But in
both cases, a handlerton callback serves mainly as glue between the core MySQL code
and the core InnoDB API, to allow transactions to happen as they are supposed to.

Note that the complexity of the handlerton callbacks is much lower than that of the
handler methods. The reason for this might be that InnoDB has a streamlined trans-
actional system, and therefore, when asked to do a standard transactional operation
such as commit, rollback, or savepoint, it doesn’t require much glue to make it work
from inside the core MySQL code. However, things are different when records are
being accessed individually via the handler methods. The expectations of the MySQL
upper SQL layer might not always be in line with the native capabilities of InnoDB.
Thus, a lot of glue work is required, and the code is more complex.

Working with the Query Cache
MySQL has a unique feature for a database: a query cache. The server can be config-
ured to cache the results of every SELECT. Then, if another SELECT arrives that is iden-
tical to one that is cached, and the tables involved in the query have not changed, the
cached result is returned immediately instead of MySQL actually going to the tables
and pulling out the matching records.

This feature provides a great performance boost for a number of applications, espe-
cially web applications that heavily rely on a database and are frequently accessed by
a large number of users in a way that makes them send identical queries to the
MySQL server. Since the introduction of the query cache, many MySQL users have
reported two- to threefold improvements in performance. Thus, any storage engine,
transactional or not, needs to be able to work correctly with the query cache.

The main issue of working with the query cache is being able to easily tell if the table
has changed or not. While it is not difficult for a nontransactional storage engine to
answer that question, things are not as easy for a multiversioned transactional stor-
age engine that supports various isolation levels. Thus, the handler interface pro-
vides a method handler::register_query_cache_table() to give transactional storage
engines a chance to answer the question of whether it is safe to cache the query. This
method is optional. If a handler does not support it, the query cache will use the pes-
simistic approach: on every commit it will invalidate all queries that refer to tables
used in the committed transaction.

register_query_cache_table() gets a chance to set a callback, along with the argu-
ment to pass to it that the query cache will invoke to decide whether the queries
involving that table are safe to cache.

214 | Chapter 11: Transactions

InnoDB uses innobase_query_caching_of_table_permitted() for the callback. It per-
forms a fairly complex analysis to make the decision. Care must be taken to avoid a
deadlock. The function handles all the issues and returns TRUE if the query involving
the given table is safe to cache, and FALSE otherwise.

Working with the Replication Binary Log
MySQL replication works by having the master maintain a binary log of updates
(called the binlog), and having the slave read and apply them. Thus, it becomes criti-
cal for a transactional storage engine to make sure that the contents of the binary log
are consistent with the state of the database.

The core MySQL code already provides a lot of help. The SQL statements are not
written into the binary log until the transaction commits, and they are not written at
all if the transaction gets rolled back. However, there are a couple of critical issues a
transactional storage engine might need to address:

• To guarantee consistency of binlog and table data in case of a crash, the storage
engine must implement XA transactions.

• In a statement-based replication, slaves execute binlog updates sequentially and
in one thread. Thus, all of the updates on the master must happen under the
SERIALIZABLE transaction isolation level in order to guarantee the same results on
the slave.

Avoiding Deadlocks
A transactional storage engine with row-level locking, especially one integrated with
an SQL server, is naturally prone to deadlocks. Thus, it is important to have a plan
for avoiding or resolving deadlocks.

InnoDB has a deadlock detection algorithm. When placing a new lock, InnoDB
makes sure that it doesn’t cause deadlocks. It will roll back a problematic transac-
tion when a deadlock is discovered. However, the deadlock detection algorithm is
aware only of InnoDB locks, and cannot detect deadlocks when some of the prob-
lem locks do not belong to InnoDB. To solve this problem, InnoDB has also timeout-
based deadlock detection that rolls back transactions that are taking a long time. The
limit is controlled by the server variable innodb_lock_wait_timeout. Thus, the appli-
cation programmer should be prepared to reissue a transaction if it gets rolled back
due to a timeout or risk of deadlock. While this may appear to be a major setback in
the area of performance, in practice, properly optimized queries in a well-designed
application almost never cause a deadlock.

Avoiding Deadlocks | 215

Another issue that working with the MySQL server adds to the deadlock dilemma is
the need to be aware of MySQL table locks. MySQL allows a user to lock a table
directly at the start of a transaction via the LOCK TABLES command. InnoDB is being
made aware of table locks via the server variable innodb_table_locks, which is set to
1 by default. When set to 1, InnoDB acquires an internal storage-engine-level table
lock when LOCK TABLES is issued.

With the increasing number of storage engines being added to MySQL, a possibility
that existed mostly on the theoretical level is becoming more and more of a reality. A
storage engine developer now needs to be concerned about cross-storage-engine
deadlocks. The InnoDB method of lock timeout can be used to address this problem.

216

Chapter 12CHAPTER 12

Replication 12

MySQL implements asynchronous master-slave replication. The master keeps a log
of updates, while the slave reads it and executes it in sequence. This chapter dis-
cusses some details of MySQL replication.

Overview
MySQL replication is relatively simple and straightforward. A server may act as a
master or a slave. The master maintains a log of updates that is called the binary log
for historical reasons. The binary log records events. Each event contains some infor-
mation that is relevant for the slave to be able to execute the update exactly the same
way the master did it. The majority of events are merely SQL queries that update the
database in one way or another. However, it is also necessary to store some meta-
data that the slave must use to recreate the context of the update in order for the
update query to yield the same results.

The slave connects to the master and starts executing updates as it reads them from
the master’s binary log. There are two threads on the slave to perform this work: the
I/O thread and the SQL thread. The I/O thread downloads the contents of the mas-
ter binary log and stores them locally in temporary files called relay logs. The relay
logs are processed by the SQL thread, which re-creates the original execution con-
text and executes the updates.

The slave keeps track of where it is in the replication process via two parameters:
current log name and current log position. If the slave ever disconnects from the
master and then reconnects, the slave will request a feed of updates starting from its
current position in the current log. The master keeps track of the log sequence order
and will automatically switch to the next log once the end of the last one is reached
during the binary log feed process. During the initial connection, the slave requests a
read from the first log known to the master. It is possible to tell the slave to start rep-
lication from an arbitrary position using the CHANGE MASTER TO command.

Statement-Based Versus Row-Based Replication | 217

The replication is asynchronous. This means that at some point in the future the
slave will catch up to the current state of the master, but the master does not nor-
mally wait for the slave to catch up. The lag between the slave and the master
depends on a number of factors: the speed of the network connecting the two serv-
ers, the types of update queries being run, the processing capabilities of the master
and the slave, and the load on both servers.

It is possible to synchronize the master and the slave programatically using a combi-
nation of FLUSH TABLES WITH READ LOCK, SHOW MASTER STATUS, and SELECT MASTER_POS_
WAIT() queries. While this technique may be useful in a number of situations, it is
frequently impractical. Network delays and outages, load spikes on the master or the
slave, and possibly other circumstances may create unacceptable delays of the appli-
cation user.

Statement-Based Versus Row-Based Replication
Replicating the data between two SQL databases can take place on the SQL level or
on the row level. In the statement-based approach, every SQL statement that could
modify the data gets logged on the master. Then those statements are re-executed on
the slave against the same initial dataset and in the same context. In the row-based
approach, every row modification gets logged on the master and then applied on the
slave. Both approaches have their advantages and disadvantages. Statement-based
replication generally requires less data to be transferred between the master and the
slave, as well as taking up less space in the update logs. It does not have to deal with
the format of the row. The compactness of the data transfer will generally allow it to
perform better. On the other hand, it is necessary to log a lot of execution context infor-
mation in order for the update to produce the same results on the slave as it did origi-
nally on the master. In some cases it is not possible to provide such a context.
Statement-based replication is also more difficult to maintain, as the addition of new
SQL functionality frequently requires extensive code updates for it to replicate properly.

Row-based replication is more straightforward. No context information is required.
It is only necessary to know which record is being updated, and what is being writ-
ten to that record. Given a good code base, the maintenance of a row-based replica-
tion is also fairly simple. Since the logging happens at a lower level, the new code will
naturally execute the necessary low-level routines that modify the database, which will
do the logging with no additional code changes. However, on a system that frequently
executes queries such as UPDATE customer SET status='Current' WHERE id BETWEEN 10000
and 20000, row-based replication produces unnecessarily large update logs and gener-
ates a lot of unnecessary network traffic between the master and the slave. It requires a
lot of awareness of the internal physical format of the record, and still has to deal with
the schema modifications. In some situations the performance overhead associated
with the increased I/O could become unacceptable.

218 | Chapter 12: Replication

MySQL initially began with statement-based replication. Up to version 5.0, the
developers managed to deal with the drawbacks of this approach. Creative tech-
niques were invented to properly replicate the execution context in difficult situa-
tions. However, with the introduction of stored procedures it became impossible to
keep up. A stored procedure has the ability to branch on a number of conditions and
in a number of different ways. MySQL replication developers addressed the problem
by adding an option to replicate row by row, starting in version 5.1.5.

As of version 5.1.8, MySQL can take advantage of three replication modes: row, state-
ment, and mixed. The mode is controlled by the configuration variable binlog_
format. In row mode, the replication is physical whenever it can be: when actual rows
are updated, the entire updated row is written to the binary log. However, when a
new table is created, dropped, or altered, the actual SQL statement is recorded.

In statement mode, the replication works the same as it did in the earlier versions:
SQL statements are logged for every update. In mixed mode, the master decides on a
per-query basis which logging to use, statement-based or row-based.

Two-Threaded Slave
The original implementation of the slave (version 3.23) used only one thread, which
was responsible for reading the binary log feed from the master and applying it to the
slave data. This approach was fine for reliable masters and slaves that did not lag too
far behind. However, there were situations in which this was not adequate. Suppose
the slave somehow ends up lagging a day behind a master, while the master somehow
becomes completely unusable. This would result in the loss of a day’s worth of data.

At the suggestion of Jeremy Zawodny from Yahoo!, the slave code was rewritten in
version 4.0 to use two threads. The I/O thread is responsible for reading the binary
log feed from the master and storing it in temporary relay logs. The SQL thread then
reads the relay logs and applies the updates to the slave data.

To a great extent, this eliminated the risk of losing large amounts of data when the
slave lags behind and the master becomes unusable. The majority of the time, the
reason the slave lags behind is not in the I/O but in the slow execution of the
updates. For example, slaves are often used to perform the reads that are not time-
critical so that the master can be relieved. Thus, a slave may experience a spike in the
load, which will delay the application of the updates arriving from the master.

Another possibility is that an update query is encountered in the binary log feed that
takes a long time to execute—let’s say three hours. Assuming the master and the
slave are equally capable hardware-wise and are equally loaded, we can have the fol-
lowing scenario. The master executes a three-hour update, and it is written to the
binary log once it is completed. Then the slave reads that update and starts execut-
ing it. In the meantime, the master had three hours to perform possibly a very large

Multi-Master | 219

number of updates. By the time the slave is done with the long update query, it is
three hours’ worth of updates behind the master.

In both scenarios, the two-threaded slave architecture permits the additional updates
to be transferred from the master in the binary log feed while the slave is applying the
long three-hour update. If the master happens to become unusable beyond repair
during that window, the update feed in the relay logs will contain a very recent
update. It is still possible to miss a couple of updates prior to the crash due to the
network delays, but it is much better than losing several hours of data.

Multi-Master
MySQL replication was not originally written with multi-master support in mind. A
slave is natively capable of replicating only one master. A fairly simple patch can be
created to allow one slave to collect updates from multiple masters without conflict
resolution. This was done at one time, but for a number of reasons did not make it
into the main branch of the source tree. A more complex patch to allow some con-
flict resolution was planned at one point, but for a number of reasons did not make it
to development. It may still be implemented in the near future.

In the mean time, there exists a very popular configuration that in essence serves as a
multi-master. Two servers are bound in a mutual master-slave relationship. Specifi-
cally, server A is configured with the binlog enabled and as a slave of server B, while
server B has its binlog also enabled and acts as a slave of server A. Thus it becomes
possible to write to either of the servers and have the updates appear on both. This
configuration, however, will maintain a consistent data snapshot as long the stream
of updates is guaranteed to produce the same results regardless of their order, or as
long as the updates are serialized. Consider the following example:

Server A executes: UPDATE customer SET balance = 50 WHERE id = 9
Server B executes: UPDATE customer SET balance = 100 WHERE id = 9

It is possible that server B will get the update event from server A before server B exe-
cutes its update. In that case, server B will end up with the balance set to 100 for id 9.
However, it is also possible that server B will take a while to get the update from
server A, and will execute its update first. In that case, server B ends up with the bal-
ance of 50 instead of 100. The logic of the application would anticipate it to be 100
since that is the query that was executed last.

However, if all updates are order-independent, then the mutual master-slave rela-
tionship configuration will produce consistent results.

It is also possible to use this configuration for a hot failover. The application always
writes to one selected server. It that server goes down, the application switches to the
other server. When the original server comes back up, it will catch up automatically
(barring a drastic crash with the loss of data), and can serve as a standby.

220 | Chapter 12: Replication

SQL Commands to Help Understand Replication
A good way to explore and understand how MySQL replication works is to look at the
output of some replication monitoring commands. Let us first configure one server as
a master by enabling the log-bin option and setting a server ID with the server-id
option to some unique number, e.g., the last byte of the IP address. Then we run:

SHOW MASTER STATUS\G

in the command-line client. We use the \G option to enable vertical display of col-
umns, which makes the output more readable. The command produces an output
similar to this:

*************************** 1. row **************************
 File: laforge-bin.011
 Position: 566920603
 Binlog_do_db:
Binlog_ignore_db:

The File field is the name of the current binary log to which the master is writing.
The Position field shows the offset in the current binary log where the next event is
going to be written, or in other words, the size of the current binary log.

The Binlog_do_db and Binlog_ignore_db fields show the values of the corresponding
options in the configuration of the master. The master can be instructed to either log
updates that were done with only certain default databases selected (Binlog_do_db, the
inclusive rule), or to exclude all of the updates that were done in a specified database
list (Binlog_ignore_db, the exclusive rule). Note that those rules apply to the default
database of the thread (selected via the USE command, or a call to mysql_select_db()
in the client API), rather than the actual database where the update occurred.

The combination of the File and the Position fields is sometimes referred to as the
replication coordinates. The replication coordinates allow a slave to tell the master
where to start the binary log feed when the slave connects to the master. They also
make it possible to track the progress of a slave as it applies the updates, and can be
used to synchronize the master and the slave.

Now let us configure a slave. First, create a replication user on the master:

GRANT REPLICATION SLAVE ON *.* TO 'rpl_user@slave-host' IDENTIFIED BY 'rpl_pass';

In this example, slave-host should be replaced with the host name or the IP address
of the slave.

Then we configure the slave. We choose a unique server ID (the last byte of the IP
address works well), load the current dataset from the master, and instruct the slave
of the location of the master with the following command:

CHANGE MASTER TO MASTER_HOST='master-host', MASTER_USER='rpl_user',
MASTER_PASSWORD='rpl_pass';

master-host should be replaced with the host name or the IP address of the master.

SQL Commands to Help Understand Replication | 221

Then the slave threads can be started:

START SLAVE;

Next run:

SHOW SLAVE STATUS\G

If we did not encounter any problems, we will see an output similar to this:

 Slave_IO_State: Waiting for master to send event
 Master_Host: www1.internal
 Master_User: repl
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: www1-bin.107
 Read_Master_Log_Pos: 403398225
 Relay_Log_File: slave-relay-bin.000894
 Relay_Log_Pos: 92576794
 Relay_Master_Log_File: www1-bin.107
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 403398225
 Relay_Log_Space: 92576794
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0

Table 12-1 contains a brief explanation of each field.

Table 12-1. Output of SHOW SLAVE STATUS

Field name Description

Slave_IO_State Textual description of what the I/O thread on the slave is doing.

Master_User The slave I/O thread connects to the master as this user.

Master_Port The TCP/IP port on which the slave IO thread connects to the master.

Connect_Retry If the slave IO thread loses the connection to the master, it will retry after the
timeout specified by this parameter.

222 | Chapter 12: Replication

Master_Log_File The logfile name on the master corresponding to the event that the SQL thread is
currently processing.

Read_Master_Log_Pos The position in the log on the master that the I/O thread is currently on.

Relay_Log_File The name of the relay log that the SQL thread is on.

Relay_Log_Pos The position in the relay log that the SQL thread is on.

Relay_Master_Log_File The logfile currently being written to by the I/O thread.

Slave_IO_Running Shows whether the I/O thread is running.

Slave_SQL_Running Shows whether the SQL thread is running.

Replicate_Do_DB Shows which databases are replicated according to the replicate-do-db
rules.

Replicate_Ignore_DB Shows which databases are ignored according to thereplicate-ignore-db
rules.

Replicate_Do_Table Shows which tables are replicated according to the replicate-do-table
rules.

Replicate_Ignore_Table Shows which tables are ignored according to the replicate-ignore-
table rules.

Replicate_Wild_Do_Table Shows which tables are replicated according to the replicate-wild-do-
table rules.

Replicate_Wild_Ignore_Table Shows which databases are ignored according to the replicate-wild-
ignore-table rules.

Last_Errno The error code of the last error that caused the replication to stop.

Last_Error The text of the error message of the last error that caused the replication to stop.

Skip_Counter The number of subsequent events that the SQL thread is going to skip. This is
used mostly when replication breaks due to some problem or possibly an over-
sight on the part of the database administrator, and there is a query that needs
to be skipped for the replication to continue as planned.

Exec_Master_Pos The position in the master log corresponding to the current position of the SQL
thread.

Relay_Log_Space The amount of disk space (in bytes) occupied by the relay logs.

Until_Condition Sometimes a slave can be instructed to replicate until a certain position in the
master or relay log is reached. This parameter tells whether there is an UNTIL
condition, and whether it is in the context of the master or the relay log.

Until_Log_File The name of the logfile in the UNTIL condition.

Until_Log_Pos The position in the logfile in the UNTIL condition.

Master_SSL_Allowed Indicates whether the slave I/O thread should connect to the master via SSL.

Master_SSL_CA_File Pathname to the certificate authority file the slave will use to connect to the master.

Master_SSL_CA_Path Pathname to a directory containing trusted SSL CA certificates in pem format.

Table 12-1. Output of SHOW SLAVE STATUS (continued)

Field name Description

Binary Log Format | 223

To an observant reader, the status variables in Table 12-1 tell a story about how rep-
lication works. For example, the Master_ connect parameters indicate that the slave
connects to the master and acts as a regular MySQL client. The presence of the
Connect_retry parameter explains that a slave is capable of dealing with disruptions
in the connectivity. The Slave_IO_Running and Slave_SQL_Running parameters tell us
about the two-threaded slave replication model. The Relay_ parameters explain how
the slave stores data temporarily in relay logs. The SSL parameters tell us the I/O
between the master and the slave can be encrypted via SSL. The Replicate_ options
tell us about the ability of the slave to replicate selectively.

Binary Log Format
Learning some details of the binary log format can reveal a lot about the replication
internals. The code that deals with the binary logging is found in sql/log_event.h and
sql/log_event.cc.

The binary log starts with a 4-byte magic number, which is set in the following line
of sql/log_event.h:

#define BINLOG_MAGIC "\xfe\x62\x69\x6e"

The magic number is used by the code that reads the binary log for a quick sanity
check to make sure a valid binary log is being used. It is also used by the Unix file
utility, which identifies file types.

The magic number is followed by a sequence of event entries. All events have a com-
mon header with the fields listed in Table 12-2 in sequential order. The second field
represents the type code of the event, and is explained in Table 12-3. All of the inte-
gers in the header are stored in the little-endian format (low byte first). The header is
written out by Log_event::write_header() in sql/log_event.cc.

Master_SSL_Cert Pathname to the certificate file.

Master_SSL_Cipher The cipher to be used in the SSL connection.

Master_SSL_Key Pathname to the SSL key file.

Seconds_Behind_Master Shows the difference in seconds between the current time and the master time-
stamp of the last executed event, adjusting for a possible clock difference
between the master and the slave if the SQL thread is behind the I/O thread.
Otherwise, it will show 0, which may not always be accurate because the I/O
thread may take some time to read an event from the master.

Table 12-1. Output of SHOW SLAVE STATUS (continued)

Field name Description

224 | Chapter 12: Replication

Table 12-2. Binary log event header

Size (bytes) Description

4 Timestamp of the event. Number of seconds since the start of the year 1970 as returned by the libc call
time().

1 The type code of the event. The values and the meaning of the code are explained in Table 12-3.

4 Server ID. Uniquely identifies the server among its replication peers. Mainly used for avoiding infinite
update loops.

4 The length of the whole event, including the header, in bytes.

4 Offset of the event in the log in bytes.

2 Event flags. For details see sql/log_event.h; search for macros matching the pattern LOG_EVENT_*_F.

Table 12-3. Binary log event type codes

Numeric value Name Description

1 Start Written at the start of the binary log in earlier versions of MySQL. Now
replaced by the Format Description event.

2 Query Contains a query that updated the master.

3 Stop Written on server shutdown.

4 Rotate Written when the logs are rotated.

5 Intvar Contains the value of the auto-increment field to be used in the next
query.

6 Load Used in 3.23. Registers a LOAD DATA INFILE operation. In the newer
version of MySQL, the New Load event is used instead.

7 Slave Not used.

8 Create File Tells the slave to create a file with the given ID for the purpose of replicat-
ing LOAD DATA INFILE.

9 Append Block Tells the slave to append a block to the file specified by the ID. Used for
replicating LOAD DATA INFILE.

10 Exec Load Tells the slave to execute the LOAD DATA INFILE associated with the file
ID.

11 Delete File Delete the file created with Create File.

12 New Load Records LOAD DATA INFILE in the newer format.

13 Rand Records the information necessary to reseed the random-number genera-
tor used by the RAND() function so that it will produce the same results
on the slave as it did on the master.

14 User Var Records the value stored in a user variable that was used in an update. This
is necessary to replicate something like this:

SELECT (@n:=count(*)) FROM customers;

UPDATE growth_history SET customer_count = @n
WHERE ts = NOW();

Binary Log Format | 225

The header of an event is followed by the body. The structure of the body greatly
varies by the event type.

Again, the study of the binlog format reveals a lot of hidden details and challenges
associated with replication. Although the basic conceptual idea of a master-slave rep-
lication with the master keeping an update log and the slave re-executing it is nearly
trivial, the devil is in the details, and the complexity of the binary log format and the
variety of event types are a witness to it. How do we handle log rotation? How do we
deal with the slave disconnecting, and reconnecting again? How do we handle auto-
increment fields? How do we replicate timestamp-sensitive queries? How do we rep-
licate LOAD DATA INFILE? How do we replicate an update that uses a random number?
How do we avoid infinite replication loops when a master is doubling as a slave of
another server in a complex replication topology, and it is possible for an update
event originating on this server to come back to it through its slave?

Those interested in the specifics should refer to the source code in sql/log_event.cc.
The body is written out via a call to Log_event::write_data_header() for the fixed-
length event-type-specific info, followed by a call to Log_event::write_data_body()
for the variable length event type specific info. Log_event is the base class for a family
of classes responsible for each event. write_data_body() and write_data_header()
are virtual methods that each class implements in its own way to handle the specifics
of the event-type data storage. The names of the classes begin with the name of the
event, and end with _log_event. Thus, if you would like to explore how the query
events are stored, you should look at Query_log_event::write_data_header() and
Query_log_event::write_data_body().

15 Format Description Starting in version 5.0.2 of MySQL, written as the first event in the binary
log to specify which format version it is using.

16 XID Logs the transaction ID of the transaction to be committed and serves as
the commit mark in the two-phase commit protocol.

17 Begin Load Query Combines Create File and Append Block into one event.

18 Execute Load Query Works like the Query event, except the name of the file in LOAD DATA
INFILE is first substituted with the name of the temporary file created
earlier.

19 Table Map Contains a mapping between database/table names and their numeric
IDs. Used in row-based replication.

20 Write Rows Contains a list of rows to write to a table. Used in row-based replication.

21 Update Rows Contains a list of rows to update in a table. Used in row-based replication.

22 Delete Rows Contains a list of rows to delete from a table. Used in row-based replication.

Table 12-3. Binary log event type codes (continued)

Numeric value Name Description

226 | Chapter 12: Replication

mysqlbinlog is a very helpful tool for analyzing and understanding the replication
binary logs. It accepts the name of the log as an argument and dumps it out in the
SQL format with some comments about the log details. For example:

$ mysqlbinlog /var/lib/mysql/www1-bin.001

produces output similar to this:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#060809 21:03:48 server id 1 end_log_pos 102
Start: binlog v 4, server v 5.1.11-beta-log created 060809 21:03:48 at startup
ROLLBACK;
at 102
#060809 21:03:48 server id 1 end_log_pos 197 Query thread_id=2
 exec_time=0 error_code=0
use test;
SET TIMESTAMP=1155179028;
SET @@session.foreign_key_checks=1,
@@session.sql_auto_is_null=1, @@session.unique_checks=1;
SET @@session.sql_mode=0;
/*!\C latin1 */;
SET @@session.character_set_client=8,
@@session.collation_connection=8,@@session.collation_server=8;
drop table if exists t1,t2,t3,t4;
at 197
#060809 21:03:48 server id 1 end_log_pos 306 Query thread_id=2
 exec_time=0 error_code=0
SET TIMESTAMP=1155179028;
create table t1(n int, m int) type=oreilly_csv;
at 306
#060809 21:03:48 server id 1 end_log_pos 439
Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1155179028;
create table t2(name char(20), age int, comment text) type=oreilly_csv;
at 439
#060809 21:03:48 server id 1 end_log_pos 548
 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1155179028;
create table t3(s text,n int) type=oreilly_csv;
at 548
#060809 21:03:48 server id 1 end_log_pos 660
 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1155179028;
create table t4(s1 text,s2 text) type=oreilly_csv;
at 660
#060809 21:03:48 server id 1 end_log_pos 755
Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1155179028;
drop table if exists t1,t2,t3,t4;
at 755
#060809 21:03:48 server id 1 end_log_pos 774 Stop
End of log file
ROLLBACK /* added by mysqlbinlog */;
/*!50003 SET COMPLETION_TYPE=@OLD_COMPLETION_TYPE*/;

Creating a Custom Replication Utility | 227

Each event in the output starts with a comment line indicating its offset in the binary
log. The next line, also a comment, shows the timestamp of the event, the server ID
originating the event, the position of the next event, and the type of the event. Follow-
ing that is a set of SQL queries that will produce the same change in the database on the
slave as the original event produced on the master. It is possible to examine only por-
tions of a binary log using the arguments --start-position, --stop-position, --start-datetime,
and --stop-datetime.

Creating a Custom Replication Utility
Usually replication can be successfully managed via SQL commands alone. This is
the recommended approach and should be used to its fullest extent whenever possi-
ble. Occasionally a situation arises when SQL commands alone are not enough. For
example, you may want to replicate only a certain subset of events that are not easily
defined with the standard replication table matching rules. Or perhaps you need to
rewrite certain queries before replicating them. In this case, the open source nature
of MySQL comes handy. There are two approaches.

The approach that yields the best performance and also provides a more robust solu-
tion when done right is to modify the loop in the code of the SQL thread in sql/slave.cc
or somewhere down the calling hierarchy. That code is found in handle_slave_sql(),
which in turn calls exec_relay_log_event(). However, this task is for a brave program-
mer. One simple mistake can not only break replication, but crash the entire slave
server. Keeping up with the new releases of MySQL may become a hassle. And, over-
all, a deeper understanding of MySQL source code is required to accomplish the task.

The simpler approach is to create a custom client using the source of mysqlbinlog
(found in client/mysqlbinlog.cc) as a base, and add a few custom features as neces-
sary. mysqlbinlog can already read a remote log. One can modify the output loop
found in dump_remote_log_entries() as needed to execute custom event filtering.

On the positive side, this approach requires less knowledge of MySQL source code
and is less intrusive. On the negative side, you do not get to tap into the proven
robustness of the native slave event management and processing code, and a fair
amount of unnecessary I/O will happen due to the presence of a mediator.

229

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
3-byte field, compressed packets, 63

A
Abstracted Storage Engine Interface, 15
Abstracted Storage Engine Module, 6
Access Control Module, 6, 11
API calls, utility calls, 54–57
ARCHIVE storage engine, 206
authenticating handshake, 64–66
authentication, protocol security, 66
autoconf, 22
automake, 22

B
BerkeleyDB, table lock manager and, 165
big-tables configuration variable, 88
binary log (binlog), 113
binary log format, replication and, 223–227
binlog (see binary log)
bison, 22
bit masks, protocol capabilities, 67
BitKeeper, 19–22

MySQL versions, 21
patches, 40
repository

cloning, 21
updates, 39

tree
BUILD directory, 24
building MySQL, 24, 25

breakpoints, debuggers, 34
B-tree keys, 198
BUILD directory, BitKeeper tree, 24
building MySQL

from BitKeeper tree, 24
from source distribution, 25

C
C library, threads, 113
caches

double caching, 203
query, 222
query cache, 213
table, 120
thread, 112

classes
Field, 51–53
handler, 119, 120–134
THD, 41–45

Client/Server Protocol API, 17
Client/Server Protocol Module, 7
clustered indexes, 202
coding guidelines

ease of integration, 39
performance, 38
portability, 38
stability, 37
style, 39

Command Dispatcher, 5, 12
command packets, 69–73
command-line

arguments, processing, 82
configuration variables, 81–83

230 | Index

commands, backward compatibility, 73
compile-generic-debug, 24
compressed packets, 46, 62

fields, 63
ZLIB, 63

concurrent insert, 89, 162
concurrent-insert configuration variable, 89
configuration files

configuration variables, 81–83
format, 83
loading, disabling, 82

configuration variables
big-tables, 88
command-line options, 81–83
concurrent-insert, 89
configuration files and, 81–83
core-file, 90
default-storage-engine, 90
defining, 83
delay-key-write, 91
ft_stopword_file, 91
init-file, 95
innodb_buffer_pool_size, 92
innodb_file_per_table, 93
innodb_flush_log_at_trx_commit, 92
innodb_lock_wait_timeout, 94
introduction, 80
key_buffer_size, 96
language, 96
log, 97
log-bin, 97
log-isam, 98
log-slow-queries, 98
max_allowed_packet, 99
max_connections, 99
max_heap_table_size, 99
max_join_size, 100
max_sort_length, 100
myisam-recover, 100
new, 86
query_cache_type, 101
read_buffer_size, 101
relay-log, 102
server-id, 103
skip-grant-tables, 103
skip-stack-trace, 104
slave-skip-errors, 104
sort_buffer_size, 105
sql-mode, 105
table_cache, 106

temp-pool, 106
transaction-isolation, 106

Connection Manager, 5, 9
Connection Thread, 5, 10
connections

client/server protocol, 62–79
maximum, 99
overview, 9

Core API, 7, 18
core modules, 4

interaction, 5
core-file configuration variable, 90
crash recovery, MyISAM and, 100
credentials in client/server

communication, 65

D
data fields, 74–75
data files, 196
data packets, 62
deadlocks, 166

avoiding, 214
debuggers

breakpoints, 34
preparing to run in, 28
queries, 29
searches, 33
variables, 34

default-storage-engine configuration
variable, 90

delay-key-write configuration variable, 91
derived tables, 43, 44
directories, source code, 27
double caching, 203

E
end-of-data-stream packets, 62
EOF packets, 77
errmsg.txt, 97
error message packets, 62, 76
errors

packets, 74
skipping during replication, 104

EXPLAIN command, 174–186
output, 178

Index | 231

F
FEDERATED storage engine, 207
Field class, 51–53
forked processes

advantages, 108
disadvantages, 109

ft_stopword_file configuration variable, 91
full table scan, 123
full-text keys, 199
functions, utility, 54–57

G
gcc, 22
gdb, 30

common commands, 32
global variables, 59–61
GNU make, 22
Grammar Rules Module, 167, 169
greedy search, 173

H
handler class, 119, 120–134
handler subclass implementation, 209
handler::external_lock() method, 209
handler::start_stmt() method, 209
handlerton, 134–136

defining, 212
transactions and, 212

handshake (see authenticating handshake)
headers, 24

definitions, 24
history of MySQL, 1

I
index files, 197
indexes (see keys)
init-file configuration variable, 95
Initialization Module, 5
in-memory tables, 99
InnoDB, 202

buffers, 92
table lock manager and, 165

InnoDB locking, 165
innodb_buffer_pool_size configuration

variable, 92
innodb_file_per_table configuration

variable, 93
innodb_flush_log_at_trx_commit

configuration variable, 92

innodb_lock_wait_timeout configuration
variable, 94

installation to system directory, 26
intention locks, 166

J
joins, 172

optimizer, 173–178
subsets, 173

K
key_buffer_size configuration variable, 96
keys

delay-key-write configuration variable, 91
full-text, 199
MyISAM, 198
represented in fields (columns), 51
represented in tables, 48
R-tree, 201
spatial, 200

L
language configuration variable, 96
lexical scanner, 167, 168
libtool, 22
locks

deadlocks, 94, 166
InnoDB locking, 165
intention locks, 166
mutexes, 114
read locks, 163
read-write, 116
record locking, 166
row-level, 90, 161
table-level, 161
write locks, 164

log configuration variable, 97
log-bin configuration variable, 97
Logging Module, 7, 16
log-isam configuration variable, 98
logs

InnoDB transaction, 92
MyISAM, 98
redo, 203
slow query, 98
undo, 203

log-slow-queries configuration variable, 98
Low-Level Network I/O API, 18
Low-Level Network I/O module, 7

232 | Index

M
m4, 22
macros, preprocessor, 57, 58
make files, generating, 24
max_allowed_packet configuration

variable, 99
max_connections configuration variable, 99
max_heap_table_size configuration

variable, 99
max_join_size configuration variable, 100
max_sort_length configuration variable, 100
MEMORY storage engine, 204
memory, threads and, 107
MERGE storage engine, 205
methods

handler::external_lock(), 209
handler::start_stmt(), 209

modules
Abstracted Storage Engine Interface, 15
Access Control Module, 11
Client/Server Protocol API, 17
Command Dispatcher, 12
Connection Manager, 9
Connection Thread, 10
Core API, 18
core modules, 4

interaction, 5
definition, 4
Logging Module, 16
Low-Level Network I/O API, 18
Optimizer, 12
Parser, 11
QueryCache Module, 12
Replication Master Module, 16
Replication Slave Module, 17
Server Initialization Module, 9
Status Reporting Module, 14
Storage Engine Implementations, 15
Table Handler, 15
Table Maintenance Module, 14
Table Manager, 13
Table Modification Modules, 13
Thread Manager, 10
User Authentication Module, 10

multi-master support, replication, 219
mutexes, 114

variables, 114

MyISAM, 165
architecture, 195
B-tree keys

full-text, 199
spatial keys, 200

data files, 196
index files, 197
key types, 198

B-tree keys, 198
storage engine, 195

myisam-recover configuration variable, 100
MySQL

1.0 release, 2
3.22, 2
4.0, 3
5.0, 3
5.1, 3
building, readiness, 23
history of, 1

MySQL AB, 2
MySQL/InnoDB, 3

N
NDB storage engine, 205

table lock manager and, 165
NET class, 46–48
noncompressed packets, 62

O
OK packets, 75
optimizer, 12, 170

algorithm, 172
core classes, 188
joins, 174
query plan, 174–186
range optimizer, 186
structures, 188
subquery optimization, 187

options (see configuration variables)

P
packets

command packets, 69–73
compressed, 62

fields, 63
ZLIB, 63

data packets, 62

Index | 233

end-of-data-stream packets, 62
EOF packets, 77
error message, 62
error packets, 76
NET, 46
noncompressed, 62
OK packets, 75
result set packets, 77
server response, 62
success report packets, 62

parse tree, 169
SELECT, 191

Parser, 11
lexical scanner, 167

passwords
hackers and, 66
protocol security and, 66

patches, BitKeeper, 40
portability, 38
preemption, threads, 118
preprocessor macros, 57, 58
protocol packets, OS layer and, 63, 64
protocols

authentication, 66
capabilities bitmask, 67

Q
queries

debuggers, 29
subquery optimization, 187

query cache, 213
Query Cache Module, 12
query plan, optimizer, 174–186
query_cache_type configuration

variable, 101

R
range optimizer, 186, 187
read locks, 163
read_buffer_size configuration variable, 101
read-write locks, 116
record locking, 166
redo log, InnoDB, 203
relay_log configuration variable, 102
replication

binary log, 97, 214
binary log format, 223–227
coordinates, 220

custom utility, 227
multi-master support, 219
overview, 216
row-based, 217
server ID, 103
SQL commands, 220–223
statement-based, 217
threads, 216
two-threaded slaves, 218

replication coordinates, 220
Replication Master Module, 16
Replication Slave Module, 7, 17
repository, BitKeeper, 21
request handling, implementation, 109–113
result set packets, 77
row-based replication, 217
row-level locks, 90, 161
R-tree keys, 201

S
scan, full table, 123
searches

debuggers, 33
source code, 33

security, authentication, 66
SELECT parse tree, 191
Server Initialization Module, 9
server response packets, 62
server responses

data fields, 74–75
EOF packets, 77
error packets, 76
OK packets, 75
result set packets, 77

server-id configuration variable, 103
singleton, 212
skip-grant-tables configuration variable, 103
skip-stack-trace configuration variable, 104
slave-skip-errors configuration variable, 104
slow query log, 98
sort_buffer_size configuration variable, 105
source code

directory layout, 27
modifying, 36
searching, 33

source distribution, building MySQL
from, 25

spatial keys, 200

234 | Index

SQL commands, replication, 220–223
SQL, TeX customers and, 1
sql-mode configuration variable, 105
stack traces, 104
statement-based replication, 217
statements, registering, 210
Storage Engine Implementations, 15
storage engines, 119

ARCHIVE, 206
comparison, 194
custom, 136–160
FEDERATED, 207
MEMORY, 204
MERGE, 205
MyISAM, 208
NDB, 205
table lock manager and, 165
transactional implementation, 208

subclasses, handler implementation, 209
subquery optimization, 187
success report packets, 62
synchronization, threads, 117
system directory, installation to, 26

T
TABLE, 48–51
Table Handler, 15
table lock manager, 162–165

BerkeleyDB and, 165
InnoDB and, 165
NDB and, 165
storage engine interaction and, 165

Table Maintenance Module, 14
Table Manager, 6, 13
Table Modification Modules, 13
table_cache configuration mode, 106
table-level locks, 161
tables

in-memory (temporary), 88
repair, MyISAM, 100
table cache, 120
temporary, 88

temp-pool configuration variable, 106
TeX, SQL interface and, 1
THD class, 41–45

threads, 110
thread alarm, 118
thread cache, 110
thread caching, enabling, 112

Thread Manager, 10
threads

advantages, 107
C library calls, 113
caching, 112
disadvantages, 108
I/O and SQL, replication, 216
memory and, 107
mutexes, 114
preemption, 118
read-write locks, 116
replication, 102, 216
synchronization, 117
THD class, 41, 110
thread safety and C libraries, 114
two-threaded slaves, 218
variables, 110

transaction-isolation configuration
variable, 106

transactions, 208–214
handlerton and, 212
InnoDB transaction log, 92
isolation levels, 106
registering, 210

Tuuri, Heikki, 2
two-threaded slaves, replication, 218

U
undo log, InnoDB, 203
Unix shell, 19
User Authentication Module, 10
utility functions, 54–57

V
variables

debuggers, 34
global, 59–61
mutexes, 114
threads, 110
(see also configuration variables)

W
Widenius, Monty, 1
write locks, 164

Z
ZLIB, compressed packets, 63

About the Author
Sasha Pachev graduated from Brigham Young University in 1998 with a degree in
Computer Science. He worked on the MySQL development team from 2000–2002
and was the original developer of replication in MySQL. In 2003, he wrote his first
book, MySQL Enterprise Solutions (Wiley). He currently lives in Provo, Utah, with
his wife, Sarah, and his five children, and works as an independent consultant with
an emphasis on MySQL.

In addition to his great interest in computers, Sasha is equally passionate about
distance running. He has won a number of marathons, has a personal best time of
2:24:47, and is attempting to qualify for the U.S. Olympic Trials. He feels it is impor-
tant to help other runners reach their potential, and he operates a web site dedicated
to that purpose, FastRunningBlog.com.

Colophon
The animal on the cover of Understanding MySQL Internals is a banded broadbill
(Eurylaimus javanicus). Broadbills are a family of small- to medium-size passerine
(perching) birds marked by their bright colors and a whitish dorsal patch. They have
large heads, rounded wings, and short to long tails. Their name originates from their
large, flattened, hooked bill (often covered by a short crest), which they use to snap up
insects in a kingfisher-like fashion. They also feed on fruit, seeds, and small vertebrates.

Broadbills live in the subcanopies of tropical forests: 11 species can be found in
southeast Asia, the Philippines, Borneo, and Sumatra; and 4 others are native to
central African rainforests. Because of their dense habitats, they are often incredibly
difficult to observe despite their bright coloring. Broadbills build elaborate, pear-
shaped nests, which are suspended on tree limbs over quiet forest backwaters and
streams. Biologists believe this may be an adaptive behavior to deter mammalian and
reptilian predators. Adult broadbills will also sometimes feign injury to draw preda-
tors away from their nests.

Broadbills are gregarious creatures and are often found in small feeding flocks. They
communicate using a variety of mating and territorial displays. Male green broad-
bills, for instance, have a spinning display, while other species of broadbills may
employ head bobbing, wing flapping, and feather fluffing. Some have display flights
in which their primary wing feathers “buzz” during times of courtship or territorial
defense. The sound can be heard from as far as 60 meters away. In addition, broad-
bills have a variety of calls—often described as a cacophony of whistles, rattles, or
screams—which they use during courtship rituals, as an alarm signal, and for contact
between mates.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Understanding MySQL Internals
	Table of Contents
	Preface
	How This Book Is Organized
	Who This Book Is For
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Enabled
	Acknowledgments

	MySQL History and Architecture
	MySQL History
	MySQL Architecture
	Core Modules
	Interaction of the Core Modules
	Detailed Look at the Core Modules
	Server Initialization Module
	Connection Manager
	Thread Manager
	Connection Thread
	User Authentication Module
	Access Control Module
	Parser
	Command Dispatcher
	Query Cache Module
	Optimizer
	Table Manager
	Table Modification Modules
	Table Maintenance Module
	Status Reporting Module
	Abstracted Storage Engine Interface (Table Handler)
	Storage Engine Implementations (MyISAM, InnoDB, MEMORY, Berkeley DB)
	Logging Module
	Replication Master Module
	Replication Slave Module
	Client/Server Protocol API
	Low-Level Network I/O API
	Core API

	Nuts and Bolts of Working with the MySQL Source Code
	Unix Shell
	BitKeeper
	Preparing the System to Build MySQL from BitKeeper Tree
	Building MySQL from BitKeeper Tree
	Building from Source Distribution
	Installing MySQL into a System Directory
	Source Code Directory Layout
	Preparing the System to Run MySQL in a Debugger
	Debugger-Guided Source Tour
	Basics of Working with gdb
	Finding Things in the Source
	Interesting Breakpoints and Variables
	Making a Source Modification
	Coding Guidelines
	Stability
	Portability
	Performance
	Style and Ease of Integration

	Keeping Your BitKeeper Repository Up to Date
	Submitting a Patch

	Core Classes, Structures, Variables, and APIs
	THD
	NET
	TABLE
	Field
	Utility API Calls
	Preprocessor Macros
	Global Variables

	Client/Server Communication
	Protocol Overview
	Packet Format
	Relationship Between MySQL Protocol and OS Layer
	Authenticating Handshake
	Authentication Protocol Security
	Protocol Capabilities Bit Mask

	Command Packet
	Server Responses
	Data Field
	OK Packet
	Error Packet
	EOF Packet
	Result Set Packets

	Configuration Variables
	Configuration Variables Tutorial
	Configuration File and Command-Line Options
	Internals of the Configuration Option Parsing
	Example of Adding a New Configuration Option

	Interesting Aspects of Specific Configuration Variables
	big-tables
	concurrent-insert
	core-file
	default-storage-engine
	delay-key-write
	ft_stopword_file
	innodb_buffer_pool_size
	innodb_flush_log_at_trx_commit
	innodb_file_per_table
	innodb_lock_wait_timeout
	innodb_force_recovery
	init-file
	key_buffer_size
	language
	log
	log-bin
	log-isam
	log-slow-queries
	max_allowed_packet
	max_connections
	max_heap_table_size
	max_join_size
	max_sort_length
	myisam-recover
	query_cache_type
	read_buffer_size
	relay-log
	server-id
	skip-grant-tables
	skip-stack-trace
	slave-skip-errors
	sort_buffer_size
	sql-mode
	table_cache
	temp-pool
	transaction-isolation

	Thread-Based Request Handling
	Threads Versus Processes
	Advantages of Using Threads
	Disadvantages of Using Threads
	Advantages of Using Forked Processes
	Disadvantages of Using Forked Processes

	Implementation of Request Handling
	Structures, Variables, Classes, and API
	Execution Walk-Through

	Thread Programming Issues
	Standard C Library Calls
	Mutually Exclusive Locks (Mutexes)
	Read-Write Locks
	Synchronization
	Preemption

	The Storage Engine Interface
	The handler Class
	handlerton

	Adding a Custom Storage Engine to MySQL
	Integration Instructions for Version 4.1
	Integration Instructions for Version 5.1

	Concurrent Access and Locking
	Table Lock Manager
	Read Lock Request
	Write Lock Request
	Storage engine interaction with the table lock manager

	InnoDB Locking
	Lock types
	Record locking
	Dealing with deadlocks

	Parser and Optimizer
	Parser
	Lexical Scanner
	Grammar Rules Module
	Parse Tree

	Optimizer
	Basics of the Optimizer Algorithm
	Using EXPLAIN to Understand the Optimizer
	Understanding the output of EXPLAIN
	Select types
	Record access types
	Extra field

	Range Optimizer
	Range
	Index_merge
	Range_desc
	Fulltext
	ROR_intersect
	ROR_union
	Group_min_max

	Subquery Optimization
	Core Optimizer Classes and Structures
	JOIN
	JOIN_TAB
	select_result

	SELECT Parse Tree
	Execution of a SELECT on the code level

	Storage Engines
	Shared Aspects of Architecture
	MyISAM
	MyISAM Architecture
	Datafile
	Index file

	MyISAM Key Types
	B-tree keys
	Full-text keys
	Spatial keys

	InnoDB
	Memory (Heap)
	MyISAM Merge
	NDB
	Archive
	Federated

	Transactions
	Overview of Transactional Storage Engine Implementation
	Implementing the handler Subclass
	Defining the handlerton
	Working with the Query Cache
	Working with the Replication Binary Log
	Avoiding Deadlocks

	Replication
	Overview
	Statement-Based Versus Row-Based Replication
	Two-Threaded Slave
	Multi-Master
	SQL Commands to Help Understand Replication
	Binary Log Format
	Creating a Custom Replication Utility

	Index

