
Progress® DataDirect
Connect® Series for JDBC

™

Reference

Release 5.1.4

Notices

For details, see the following topics:

• Copyright

Copyright
© 2016 Progress Software Corporation and/or one of its subsidiaries or affiliates. All
rights reserved.
These materials and all Progress

®
software products are copyrighted and all rights are reserved by Progress

Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in these
materials to specific platforms supported are subject to change.

Business Making Progress, Corticon, DataDirect (and design), DataDirect Cloud, DataDirect Connect, DataDirect
Connect64, DataDirect XML Converters, DataDirect XQuery, Deliver More Than Expected, Icenium, Kendo
UI, Making Software Work Together, NativeScript, OpenEdge, Powered by Progress, Progress, Progress
Software Business Making Progress, Progress Software Developers Network, Rollbase, RulesCloud, RulesWorld,
SequeLink, Sitefinity (and Design), SpeedScript, Stylus Studio, TeamPulse, Telerik, Telerik (and Design), Test
Studio, and WebSpeed are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, AppsAlive, AppServer, BravePoint, BusinessEdge,
DataDirect Spy, DataDirect SupportLink, Future Proof, High Performance Integration, OpenAccess, ProDataSet,
Progress Arcade, Progress Profiles, Progress Results, Progress RFID, Progress Software, ProVision, PSE
Pro, SectorAlliance, Sitefinity, SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects,
SmartDataView, SmartDialog, SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer,
SmartWindow, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark
of Oracle and/or its affiliates. Any other marks contained herein may be trademarks of their respective owners.

3Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Please refer to the readme applicable to the particular Progress product release for any third-party
acknowledgements required to be provided in the documentation associated with the Progress product.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.44

Notices

Table of Contents

Preface..11
About This Reference...11
What Is Progress DataDirect Connect Series for JDBC?...11
Using This Reference...12
About the Product Documentation..13
Typographical Conventions...13
Contacting Technical Support...14

Chapter 1: JDBC Support..17
JDBC and JVM Compatibility..17
Supported Functionality..17

Array...18
Blob..18
CallableStatement..19
Clob..30
Connection...31
ConnectionEventListener...36
ConnectionPoolDataSource...36
DatabaseMetaData..36
DataSource..45
Driver..45
ParameterMetaData...46
PooledConnection..47
PreparedStatement..47
Ref..52
ResultSet..52
ResultSetMetaData..62
RowSet...63
SavePoint...64
Statement...64
StatementEventListener...68
Struct..68
XAConnection..68
XADataSource...69
XAResource...69

Chapter 2: JDBC Extensions...71
Using JDBC Wrapper Methods to Access JDBC Extensions...72

5Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Contents

DatabaseMetaData Interface (Salesforce Driver)...73
DDBulkLoad Interface...73
ExtConnection Interface..80
ExtDatabaseMetaData Interface...85
ExtLogControl Class...85

Chapter 3: Supported SQL Functionality and Extensions for The Driver
for Apache Hive..87

Data Definition Language (DDL)...87
Insert...88
Selecting Data With the Driver..89

Select List...89
From Clause...89
Group By Clause..90
Having Clause..90
Order By Clause...90
For Update Clause...90
Set Operators...90
Subqueries...91

SQL Expressions..91
Constants...91
Numeric Operators...92
Character Operator..92
Relational Operators..92
Logical Operators...93
Functions..93

Restrictions...95

Chapter 4: Supported SQL Statements and Extensions for the Salesforce
Driver...97

Alter Cache (EXT)...98
Relational Caches..100

Alter Index...100
Alter Sequence...100
Alter Session (EXT)..101
Alter Table...102

Altering a Remote Table...102
Altering a Local Table...105

Checkpoint..108
Create Cache (EXT)...108

Relational Caches..109
Referencing Clause..110

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.46

Contents

Refresh Interval Clause..110
Initial Check Clause...111
Persist Clause..111
Enabled Clause..112
Call Limit Clause..113
Filter Clause...114

Create Index...115
Create Sequence..115

Next Value For Clause...116
Create Table..116

Creating a Remote Table...116
Creating a Local Table...121

Create View...127
Delete..128
Drop Cache (EXT)..129
Drop Index...129
Drop Sequence...130
Drop Table...131
Drop View..131
Explain Plan..132
Insert...132

Specifying an External ID Column...133
Refresh Cache (EXT)..134
Refresh Schema (EXT)...135
Select..135

Select Clause...136
From Clause...139

Set Checkpoint Defrag..145
Set Logsize...146
Update...146
SQL Expressions..147

Column Names..148
Literals..148

Operators..150
Unary Operator..150
Binary Operator..150
Arithmetic Operators..151
Concatenation Operator...151
Comparison Operators...151
Logical Operators...153
Operator Precedence...153

Functions...154
Conditions...159
Subqueries..159

IN Predicate...160

7Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Contents

EXISTS Predicate..160
UNIQUE Predicate...160
Correlated Subqueries...161

Chapter 5: getTypeInfo()..163
DB2 Driver...164
Informix Driver...175
MySQL Driver..184
Oracle Driver...195
PostgreSQL Driver..203
Progress OpenEdge Driver...210
SQL Server Driver...218
Sybase Driver...232
The Driver for Apache Hive...244
Greenplum Driver..249
Salesforce Driver..256

Chapter 6: Designing JDBCApplications for PerformanceOptimization.265
Using Database Metadata Methods..266

Minimizing the Use of Database Metadata Methods..266
Avoiding Search Patterns...267
Using a Dummy Query to Determine Table Characteristics...267

Returning Data..268
Returning Long Data..268
Reducing the Size of Returned Data..269
Choosing the Right Data Type...269
Retrieving Result Sets..269

Selecting JDBC Objects and Methods ...270
Using Parameter Markers as Arguments to Stored Procedures..270
Using the Statement Object Instead of the PreparedStatement Object...................................270
Using Batches Instead of Prepared Statements..271
Choosing the Right Cursor...272
Using get Methods Effectively..272
Retrieving Auto Generated Keys..273

Managing Connections and Updates..273
Managing Connections..274
Managing Commits in Transactions...274
Choosing the Right Transaction Model..275
Using updateXXX Methods..275
Using getBestRowIdentifier..275

Chapter 7: SQL Escape Sequences for JDBC...277
Date, Time, and Timestamp Escape Sequences..278

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.48

Contents

Scalar Functions...278
Outer Join Escape Sequences...287
LIKE Escape Character Sequence for Wildcards...289
Procedure Call Escape Sequences..289

Chapter 8: Using DataDirect Test...291
DataDirect Test Tutorial...291

Configuring DataDirect Test...292
Starting DataDirect Test...292
Connecting Using DataDirect Test...293
Executing a Simple Select Statement..296
Executing a Prepared Statement...297
Retrieving Database Metadata...300
Scrolling Through a Result Set..302
Batch Execution on a Prepared Statement..304
Returning ParameterMetaData..307
Establishing Savepoints...308
Updatable Result Sets...311
Retrieving Large Object Data...319

Chapter 9: Tracking JDBC Calls with DataDirect Spy............................325
Enabling DataDirect Spy...325

Using the JDBC Driver Manager..326
Using JDBC Data Sources...327
DataDirect Spy Attributes...328

Chapter 10: Connection Pool Manager..331
About JDBC Connection Pools...332
Configuring the Connection Pool..332

Understanding the Maximum Pool Size...333
Using Reauthentication with the Pool Manager...333

Checking the Pool Manager Version...334
Enabling Pool Manager Tracing..335
Using a DataDirect Connection Pool..335

Creating a Driver DataSource Object ..335
Creating the Connection Pool..336

Connecting Using a Connection Pool...338
Closing the Connection Pool...339
DataDirect Connection Pool Manager Interfaces..339

PooledConnectionDataSourceFactory...340
PooledConnectionDataSource...340
ConnectionPoolMonitor..344

9Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Contents

Chapter 11: Statement Pool Monitor..347
Using DataDirect-Specific Methods to Access the Statement Pool Monitor.......................................348

Using the poolEntries Method..348
Generating a List of Statements in the Statement Pool...349

Using JMX to Access the Statement Pool Monitor...350
Importing Statements into a Statement Pool..352
Clearing All Statements in a Statement Pool..352
Freezing and Unfreezing the Statement Pool...353
Generating a Statement Pool Export File...353
DataDirect Statement Pool Monitor Interfaces and Classes...353

ExtStatementPoolMonitor Class..354
ExtStatementPoolMonitorMBean Interface..354

Chapter 12: Troubleshooting..357
Troubleshooting Your Application...357

Turning On and Off DataDirect Spy Logging..358
DataDirect Spy Log Example...358

Troubleshooting Connection Pooling..360
Enabling Pool Manager Tracing...360
Pool Manager Trace File Example...360

Troubleshooting Statement Pooling..364
Generating a Statement Pool Export File...364
Statement Pool Export File Example...364

Using Java Logging (Salesforce)..365
Logging Components...365

Configuring Logging..367
Using the JVM..367
Using the Driver...368

Glossary...369

Index...373

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.410

Contents

Preface

For details, see the following topics:

• About This Reference

• What Is Progress DataDirect Connect Series for JDBC?

• Using This Reference

• About the Product Documentation

• Typographical Conventions

• Contacting Technical Support

About This Reference
This reference provides information on the Progress® DataDirect Connect® Series for JDBC

™, which includes the
following products:

• DataDirect Connect for JDBC

• DataDirect Connect XE for JDBC

What Is Progress DataDirect Connect Series for JDBC?
Progress DataDirect Connect Series for JDBC provides a suite of JDBC drivers that supports most leading
databases. The drivers are compliant with Type 4 architecture, but provide advanced features that define them
as Type 5 drivers. These features include:

11Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

• Application failover

• Distributed transactions

• Bulk load

The drivers consistently support the latest database features and are fully compliant with Java™ SE 8 and JDBC
4.0 functionality.

Using This Reference
This reference assumes that you are familiar with your operating system and its commands, the definition of
directories, and accessing a database through an end-user application.

This reference contains the following information:

• JDBC Support on page 17 provides information about the JDBC interfaces and methods supported for
DataDirect Connect Series for JDBC.

• JDBC Extensions on page 71 describes the JDBC extensions provided by the com.ddtek.jdbc.extensions
package.

• Supported SQL Statements and Extensions for the Salesforce Driver on page 97 describes the standard
SQL statements and the SQL extensions supported by the Salesforce driver.

• getTypeInfo() on page 163 provides results returned from the DataBaseMetaData.getTypeinfo() method for
the drivers.

• Designing JDBC Applications for Performance Optimization on page 265 explains how you optimize your
application code to improve performance.

• SQL Escape Sequences for JDBC on page 277 describes the scalar functions supported by the drivers. Your
data store may not support all these functions.

• Using DataDirect Test on page 291 contains a tutorial that takes you through a step-by-step example of how
to use DataDirect Test™ for JDBC, a tool that allows you to test and debug your JDBC applications during
development.

• Tracking JDBC Calls with DataDirect Spy on page 325 describes how to use DataDirect Spy™ for JDBC for
tracking JDBC calls in running applications.

• Connection Pool Manager on page 331 describes how to use the DataDirect Connection Pool Manager to
create your own connection pooling mechanism.

• Statement Pool Monitor on page 347 describes how to use the DataDirect Statement Pool Monitor to import
statements to and remove statements from the statement pool as well as generate information to help you
troubleshoot statement pooling performance.

• Troubleshooting on page 357 provides information that can help you troubleshoot driver problems.

Note: This reference refers the reader to Web pages using URLs for more information about specific topics,
including Web URLs not maintained by Progress DataDirect. Because it is the nature of Web content to change
frequently, Progress DataDirect can guarantee only that the URLs in this reference were correct at the time of
publishing.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.412

Preface

About the Product Documentation
The Progress DataDirect Connect Series for JDBC library consists of the following guides:

• Progress DataDirect Connect Series for JDBC Installation Guide details requirements and procedures for
installing the product.

• Progress DataDirect Connect Series for JDBC User’s Guide provides information about customizing and
using the product.

• Progress DataDirect Connect Series for JDBC Reference provides reference information for using the
product.

Installed Documentation
The User's Guide and Reference are installed with the product as an HTML-based help system. This help
system is located in the help subdirectory of the product installation directory. You can use the help system
with any of the following browsers:

• Google Chrome 33.x or higher

• Internet Explorer 9.x or higher

• Mozilla Firefox 27.x or higher

• Safari 5.1.7 or higher

• Opera 20.x or higher

Online Documentation
The Progress DataDirect Connect Series for JDBC library is available online in HTML and PDF formats by
searching the supported database system on the DataDirect Connectors Documentation Web Page.

Typographical Conventions
This guide uses the following typographical conventions:

ExplanationConvention

Introduces new terms with which you may not be familiar, and is used occasionally
for emphasis.

italics

Emphasizes important information. Also indicates button, menu, and icon names on
which you can act. For example, click Next.

bold

Indicates keys or key combinations that you can use. For example, press the ENTER
key.

BOLD UPPERCASE

Indicates SQL reserved words.UPPERCASE

13Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Preface

https://www.progress.com/resources/documentation/datadirect-documentation

ExplanationConvention

Indicates syntax examples, values that you specify, or results that you receive.monospace

Indicates names that are placeholders for values that you specify. For example,
filename.

monospaced italics

Separates menus and their associated commands. For example, Select File > Copy
means that you should select Copy from the File menu.

>

The slash also separates directory levels when specifying locations under UNIX./

Indicates an "OR" separator used to delineate items.vertical rule |

Indicates optional items. For example, in the following statement: SELECT
[DISTINCT], DISTINCT is an optional keyword.

Also indicates sections of the Windows Registry.

brackets []

Indicates that you must select one item. For example, {yes | no} means that you must
specify either yes or no.

braces { }

Indicates that the immediately preceding item can be repeated any number of times
in succession. An ellipsis following a closing bracket indicates that all information in
that unit can be repeated.

ellipsis . . .

Contacting Technical Support
Progress DataDirect offers a variety of options to meet your support needs. Please visit our Web site for more
details and for contact information:

https://www.progress.com/support

The Progress DataDirect Web site provides the latest support information through our global service network.
The SupportLink program provides access to support contact details, tools, patches, and valuable information,
including a list of FAQs for each product. In addition, you can search our Knowledgebase for technical bulletins
and other information.

When you contact us for assistance, please provide the following information:

• Your number or the serial number that corresponds to the product for which you are seeking support, or a
case number if you have been provided one for your issue. If you do not have a SupportLink contract, the
SupportLink representative assisting you will connect you with our Sales team.

• Your name, phone number, email address, and organization. For a first-time call, you may be asked for full
information, including location.

• The Progress DataDirect product and the version that you are using.

• The type and version of the operating system where you have installed your product.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.414

Preface

https://www.progress.com/support

• Any database, database version, third-party software, or other environment information required to understand
the problem.

• A brief description of the problem, including, but not limited to, any error messages you have received, what
steps you followed prior to the initial occurrence of the problem, any trace logs capturing the issue, and so
on. Depending on the complexity of the problem, you may be asked to submit an example or reproducible
application so that the issue can be re-created.

• A description of what you have attempted to resolve the issue. If you have researched your issue on Web
search engines, our Knowledgebase, or have tested additional configurations, applications, or other vendor
products, you will want to carefully note everything you have already attempted.

• A simple assessment of how the severity of the issue is impacting your organization.

15Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Preface

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.416

Preface

1
JDBC Support

This section provides information, such as JDBC/JVM compatibility and how JDBC interfaces are supported,
to help you develop JDBC applications for use with Progress DataDirect drivers.

Note: This section describes the behavior of multiple drivers across the spectrum of Progress DataDirect
drivers. The functionality described may not necessarily apply to your driver or database system.

For details, see the following topics:

• JDBC and JVM Compatibility

• Supported Functionality

JDBC and JVM Compatibility
The drivers are compatible with JDBC 2.0, 3.0, 4.0, 4.1, and 4.2. The drivers are supported on Java SE 5 and
higher JVMs.

Note: The Salesforce driver requires a Java SE 7 or higher JVM to comply with Salesforce security standards.

Supported Functionality
This section lists functionality supported for the following JDBC interfaces.

17Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Array

CommentsSupportedVersion
Introduced

Array Methods

Yes4.0void free()

Yes2.0 CoreObject getArray()

The drivers ignore the map argument.Yes2.0 CoreObject getArray(map)

Yes2.0 CoreObject getArray(long, int)

The drivers ignore the map argument.Yes2.0 CoreObject getArray(long, int, map)

Yes2.0 Coreint getBaseType()

Yes2.0 CoreString getBaseTypeName()

Yes2.0 CoreResultSet getResultSet()

The drivers ignore the map argument.Yes2.0 CoreResultSet getResultSet(map)

Yes2.0 CoreResultSet getResultSet(long, int)

The drivers ignore the map argument.Yes2.0 CoreResultSet getResultSet(long, int, map)

Blob

CommentsSupportedVersion
Introduced

Blob Methods

Yes4.0void free()

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 CoreInputStream getBinaryStream()

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 Corebyte[] getBytes(long, int)

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 Corelong length()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.418

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Blob Methods

The Informix driver requires that the pattern
parameter (which specifies the Blob object
designating the BLOB value for which to
search) be less than or equal to a maximum
value of 4096 bytes.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

Yes2.0 Corelong position(Blob, long)

The Informix driver requires that the pattern
parameter (which specifies the byte array
for which to search) be less than or equal
to a maximum value of 4096 bytes. All other
drivers support using data types that map
to the JDBC LONGVARBINARY data type.

Yes2.0 Corelong position(byte[], long)

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0OutputStream setBinaryStream(long)

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0int setBytes(long, byte[])

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0int setBytes(long, byte[], int, int)

The drivers support using data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0void truncate(long)

CallableStatement

CommentsSupportedVersion
Introduced

CallableStatement Methods

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

The Progress OpenEdge driver throws an
"unsupported method" exception.

Yes2.0 CoreArray getArray(int)

Supported for the SQL Server driver only.

All other drivers throw an "unsupported
method" exception.

Yes3.0Array getArray(String)

19Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

CallableStatement Methods

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes4.0Reader getCharacterStream(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0Reader getCharacterStream(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes2.0 CoreBigDecimal getBigDecimal(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0BigDecimal getBigDecimal(int, int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0BigDecimal getBigDecimal(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

Yes2.0 CoreBlob getBlob(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Blob getBlob(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0boolean getBoolean(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0boolean getBoolean(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0byte getByte(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.420

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0byte getByte(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0byte [] getBytes(int)

Supported for the SQL Server driver only.
All other drivers throw "unsupported
method" exception.

Yes3.0byte [] getBytes(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers support using data types
that map to the JDBC LONGVARBINARY
data type.

Yes2.0 CoreClob getClob(int)

Supported for the SQL Server driver only
using with data types that map to the JDBC
LONGVARCHAR data type.

All other drivers throw "unsupported
method" exception.

Yes3.0Clob getClob(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0Date getDate(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes2.0 CoreDate getDate(int, Calendar)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Date getDate(String)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Date getDate(String, Calendar)

21Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

CallableStatement Methods

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0double getDouble(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0double getDouble(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0float getFloat(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0float getFloat(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0int getInt(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0int getInt(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0long getLong(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0long getLong(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0Reader getNCharacterStream(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0Reader getNCharacterStream(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0NClob getNClob(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.422

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

CallableStatement Methods

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0NClob getNClob(String)

The drivers for Salesforce and Oracle
Service Cloud throw "unsupported method"
exception.

Yes4.0String getNString(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0String getNString(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0Object getObject(int)

The drivers ignore the Map argument.Yes2.0 CoreObject getObject(int, Map)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Object getObject(String)

Supported for the SQL Server driver only.
The SQL Server driver ignores the Map
argument.

All other drivers throw "unsupported
method" exception.

Yes3.0Object getObject(String, Map)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

No2.0 CoreRef getRef(int)

The drivers throw "unsupported method"
exception.

No3.0Ref getRef(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0short getShort(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0short getShort(String)

23Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

CallableStatement Methods

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0SQLXML getSQLXML(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0SQLXML getSQLXML(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0String getString(int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0String getString(String)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0Time getTime(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes2.0 CoreTime getTime(int, Calendar)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Time getTime(String)

Supported for SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Time getTime(String, Calendar)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0Timestamp getTimestamp(int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes2.0 CoreTimestamp getTimestamp(int, Calendar)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Timestamp getTimestamp(String)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.424

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0Timestamp getTimestamp(String, Calendar)

The drivers throw "unsupported method"
exception.

No3.0URL getURL(int)

The drivers throw "unsupported method"
exception.

No3.0URL getURL(String)

Yes4.0boolean isWrapperFor(Class<?> iface)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0void registerOutParameter(int, int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

Yes1.0void registerOutParameter(int, int, int)

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

The Oracle driver supports the String
argument.

For all other drivers, the String argument is
ignored.

Yes2.0 Corevoid registerOutParameter(int, int, String)

Supported for the SQL Server driver only.

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

Yes3.0void registerOutParameter(String, int)

Supported for the SQL Server driver only.

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception.

Yes3.0void registerOutParameter(String, int, int)

25Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

The drivers for Salesforce and Oracle
Service Cloud throw an "invalid parameter
bindings" exception when your application
calls output parameters.

All other drivers throw "unsupported
method" exception. String/typename
ignored.

Yes3.0void registerOutParameter(String, int, String)

Supported for the Oracle driver only.

All other drivers throw "unsupported
method" exception.

Yes2.0 Corevoid setArray(int, Array)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setAsciiStream(String, InputStream)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setAsciiStream(String, InputStream,
int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setAsciiStream(String, InputStream,
long)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setBigDecimal(String, BigDecimal)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setBinaryStream(String, InputStream)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setBinaryStream(String, InputStream,
int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setBinaryStream(String, InputStream,
long)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setBlob(String, Blob)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.426

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setBlob(String, InputStream)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setBlob(String, InputStream, long)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setBoolean(String, boolean)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setByte(String, byte)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setBytes(String, byte [])

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setCharacterStream(String, Reader,
int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setCharacterStream(String,
InputStream, long)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setClob(String, Clob)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setClob(String, Reader)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes4.0void setClob(String, Reader, long)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setDate(String, Date)

27Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setDate(String, Date, Calendar)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setDouble(String, double)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setFloat(String, float)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setInt(String, int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setLong(String, long)

Yes4.0void setNCharacterStream(String, Reader,
long)

Yes4.0void setNClob(String, NClob)

Yes4.0void setNClob(String, Reader)

Yes4.0void setNClob(String, Reader, long)

Yes4.0void setNString(String, String)

Yes2.0 Corevoid setNull(int, int, String)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setNull(String, int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setNull(String, int, String)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setObject(String, Object)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.428

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

CallableStatement Methods

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setObject(String, Object, int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setObject(String, Object, int, int)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setShort(String, short)

The drivers for Salesforce and Oracle
Service Cloud throw an "unsupported
method" exception.

Yes4.0void setSQLXML(String, SQLXML)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setString(String, String)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setTime(String, Time)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setTime(String, Time, Calendar)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setTimestamp(String, Timestamp)

Supported for the SQL Server driver only.

All other drivers throw "unsupported
method" exception.

Yes3.0void setTimestamp(String, Timestamp,
Calendar)

Yes4.0<T> T unwrap(Class<T> iface)

The drivers throw "unsupported method"
exception.

No3.0void setURL(String, URL)

Yes1.0boolean wasNull()

29Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

Clob

CommentsSupportedVersion
Introduced

Clob Methods

Yes4.0void free()

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes2.0 CoreInputStream getAsciiStream()

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes2.0 CoreReader getCharacterStream()

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes4.0Reader getCharacterStream(long, long)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes2.0 CoreString getSubString(long, int)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes2.0 Corelong length()

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

The Informix driver requires that the
searchStr parameter be less than or equal
to a maximum value of 4096 bytes.

Yes2.0 Corelong position(Clob, long)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

The Informix driver requires that the
searchStr parameter be less than or equal
to a maximum value of 4096 bytes.

Yes2.0 Corelong position(String, long)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes3.0 CoreOutputStream setAsciiStream(long)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes3.0 CoreWriter setCharacterStream(long)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.430

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Clob Methods

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes3.0 Coreint setString(long, String)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes3.0 Coreint setString(long, String, int, int)

All drivers support using with data types that
map to the JDBC LONGVARCHAR data
type.

Yes3.0 Corevoid truncate(long)

Connection

CommentsSupportedVersion
Introduced

Connection Methods

Yes1.0void clearWarnings()

When a connection is closed while a
transaction is still active, that transaction is
rolled back.

Yes1.0void close()

Yes1.0void commit()

Yes4.0Blob createBlob()

Yes4.0Clob createClob()

Yes4.0NClob createNClob()

The drivers throw an unsupported method
exception.

No4.0createArrayOf(String, Object[])

Only the Oracle driver supports this method.Yes4.0createStruct(String, Object[])

Yes4.0SQLXML createSQLXML()

Yes1.0Statement createStatement()

31Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

Connection Methods

For the DB2 driver,
ResultSet.TYPE_SCROLL_SENSITIVE is
downgraded to
TYPE_SCROLL_INSENSITIVE.

For the drivers for Salesforce and Oracle
Service Cloud, be aware that scroll-sensitive
result sets are expensive from both a Web
service call and a performance perspective.
The drivers expend a network round trip for
each row that is fetched.

Yes2.0 CoreStatement createStatement(int, int)

With the exception of the DB2 driver, the
specified holdability must match the
database default holdability. Otherwise, an
"unsupported method" exception is thrown.

For the DB2 driver, the method can be
called regardless of whether the specified
holdability matches the database default
holdability.

No3.0Statement createStatement(int, int, int)

Supported for the Oracle driver only.

All other drivers throw "unsupported method"
exception.

Yes1.0Struct createStruct(String, Object[])

Yes1.0boolean getAutoCommit()

The drivers for the listed database systems
return an empty string because they do not
have the concept of a catalog: Oracle,
PostgreSQL, Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala,
Greenplum, Salesforce, Oracle Service
Cloud, MongoDB, and Amazon Redshift.

Yes1.0String getCatalog()

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB do not support storing or
retrieving client information.

Yes4.0String getClientInfo()

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB do not support storing or
retrieving client information.

Yes4.0String getClientInfo(String)

Yes3.0int getHoldability()

Yes1.0DatabaseMetaData getMetaData()

Yes1.0int getTransactionIsolation()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.432

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Connection Methods

Always returns empty java.util.HashMap.Yes2.0 CoreMap getTypeMap()

Yes1.0SQLWarning getWarnings()

Yes1.0boolean isClosed()

Yes1.0boolean isReadOnly()

Yes4.0boolean isValid()

Yes4.0boolean isWrapperFor(Class<?> iface)

Always returns the same String that was
passed in from the application.

Yes1.0String nativeSQL(String)

Yes1.0CallableStatement prepareCall(String)

For the drivers for Apache Cassandra, DB2,
Salesforce, Oracle Service Cloud, and
MongoDB, ResultSet.TYPE_SCROLL_
SENSITIVE is downgraded to
TYPE_SCROLL_INSENSITIVE.

Yes2.0 CoreCallableStatement prepareCall(String, int,
int)

The DB2 driver allows this method whether
or not the specified holdability is the same
as the default holdability.

The other drivers throw the exception
"Changing the default holdability is not
supported" when the specified holdability
does not match the default holdability.

Yes3.0CallableStatement prepareCall(String, int,
int, int)

Yes1.0PreparedStatement prepareStatement
(String)

Yes3.0PreparedStatement prepareStatement
(String, int)

For the DB2 driver,
ResultSet.TYPE_SCROLL_ SENSITIVE is
downgraded to
TYPE_SCROLL_INSENSITIVE.

For the drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB, be aware that scroll-sensitive
result sets are expensive from both a Web
service call and a performance perspective.
The drivers expend a network round trip for
each row that is fetched.

Yes2.0 CorePreparedStatement prepareStatement
(String, int, int)

33Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

Connection Methods

All drivers throw "unsupported method"
exception.

No3.0PreparedStatement prepareStatement
(String, int, int, int)

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Yes3.0PreparedStatement prepareStatement
(String, int[])

Supported for the SQL Server driver only.

All other drivers throw "unsupported method"
exception.

Yes3.0PreparedStatement prepareStatement
(String, String [])

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB throw an "unsupported method"
exception.

Yes3.0void releaseSavepoint(Savepoint)

Yes1.0void rollback()

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB throw an "unsupported method"
exception.

Yes3.0void rollback(Savepoint)

The drivers for Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala,
Salesforce, Oracle Service Cloud, and
MongoDB throw "transactions not
supported" exception if set to false.

Yes1.0void setAutoCommit(boolean)

The driver for the listed database systems
ignore any value set by the String
argument.The corresponding drivers return
an empty string because they do not have
the concept of a catalog: Oracle,
PostgreSQL, Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala,
Greenplum, Salesforce, Oracle Service
Cloud, MongoDB, and Amazon Redshift.

Yes1.0void setCatalog(String)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.434

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Connection Methods

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB do not support storing or
retrieving client information.

Yes4.0String setClientInfo(Properties)

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB do not support storing or
retrieving client information.

Yes4.0String setClientInfo(String, String)

The DB2 driver supports the Holdability
parameter value.

For other drivers, the Holdability parameter
value is ignored.

Yes3.0void setHoldability(int)

Yes1.0void setReadOnly(boolean)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i. In
addition, the DB2 driver only supports
multiple nested savepoints for DB2 V8.2 and
higher for Linux/UNIX/Windows.

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB throw an "unsupported method"
exception.

Yes3.0Savepoint setSavepoint()

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i. In
addition, the DB2 driver only supports
multiple nested savepoints for DB2 V8.2 and
higher for Linux/UNIX/Windows.

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB throw an "unsupported method"
exception.

Yes3.0Savepoint setSavepoint(String)

The drivers for Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala,
Salesforce, Oracle Service Cloud, and
MongoDB ignore any specified transaction
isolation level.

Yes1.0void setTransactionIsolation(int)

The drivers ignore this connection method.Yes2.0 Corevoid setTypeMap(Map)

Yes4.0<T> T unwrap(Class<T> iface)

35Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

ConnectionEventListener

CommentsSupportedVersion
Introduced

ConnectionEventListener Methods

Yes3.0void connectionClosed(event)

Yes3.0void connectionErrorOccurred(event)

ConnectionPoolDataSource

CommentsSupportedVersion
Introduced

ConnectionPoolDataSource Methods

Yes2.0 Optionalint getLoginTimeout()

Yes2.0 OptionalPrintWriter getLogWriter()

Yes2.0 OptionalPooledConnection getPooledConnection()

Yes2.0 OptionalPooledConnection getPooledConnection
(String, String)

Yes2.0 Optionalvoid setLoginTimeout(int)

Yes2.0 Optionalvoid setLogWriter(PrintWriter)

DatabaseMetaData

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes4.0boolean
autoCommitFailureClosesAllResultSets()

Yes1.0boolean allProceduresAreCallable()

Yes1.0boolean allTablesAreSelectable()

Yes1.0boolean
dataDefinitionCausesTransactionCommit()

Yes1.0boolean
dataDefinitionIgnoredInTransactions()

Yes2.0 Coreboolean deletesAreDetected(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.436

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Not supported by the SQL Server and
Sybase drivers.

Yes1.0boolean doesMaxRowSizeIncludeBlobs()

The Oracle driver may return results.

All other drivers return an empty result set.

Yes3.0getAttributes(String, String, String, String)

Yes1.0ResultSet getBestRowIdentifier(String,
String, String, int, boolean)

Yes1.0ResultSet getCatalogs()

Yes1.0String getCatalogSeparator()

Yes1.0String getCatalogTerm()

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB do not support storing or
retrieving client information.

Yes4.0String getClientInfoProperties()

Not supported by the drivers for Apache
Hive, Apache Spark SQL, or Impala.

Yes1.0ResultSet getColumnPrivileges(String,
String, String, String)

Yes1.0ResultSet getColumns(String, String, String,
String)

Yes2.0 CoreConnection getConnection()

Yes1.0ResultSet getCrossReference(String, String,
String, String, String, String)

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB return an empty result set.

Not supported by the drivers for Apache
Hive, Apache Spark SQL, or Impala.

Yes4.0ResultSet getFunctions()

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB return an empty result set.

Not supported by the drivers for Apache
Hive, Apache Spark SQL, or Impala.

Yes4.0ResultSet getFunctionColumns()

Yes3.0int getDatabaseMajorVersion()

Yes3.0int getDatabaseMinorVersion()

Yes1.0String getDatabaseProductName()

37Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0String getDatabaseProductVersion()

Yes1.0int getDefaultTransactionIsolation()

Yes1.0int getDriverMajorVersion()

Yes1.0int getDriverMinorVersion()

Yes1.0String getDriverName()

Yes1.0String getDriverVersion()

Yes1.0ResultSet getExportedKeys(String, String,
String)

Yes1.0String getExtraNameCharacters()

Yes1.0String getIdentifierQuoteString()

Yes1.0ResultSet getImportedKeys(String, String,
String)

Yes1.0ResultSet getIndexInfo(String, String, String,
boolean, boolean)

Yes3.0int getJDBCMajorVersion()

Yes3.0int getJDBCMinorVersion()

Yes1.0int getMaxBinaryLiteralLength()

Yes1.0int getMaxCatalogNameLength()

Yes1.0int getMaxCharLiteralLength()

Yes1.0int getMaxColumnNameLength()

Yes1.0int getMaxColumnsInGroupBy()

Yes1.0int getMaxColumnsInIndex()

Yes1.0int getMaxColumnsInOrderBy()

Yes1.0int getMaxColumnsInSelect()

Yes1.0int getMaxColumnsInTable()

Yes1.0int getMaxConnections()

Yes1.0int getMaxCursorNameLength()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.438

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0int getMaxIndexLength()

Yes1.0int getMaxProcedureNameLength()

Yes1.0int getMaxRowSize()

Yes1.0int getMaxSchemaNameLength()

Yes1.0int getMaxStatementLength()

Yes1.0int getMaxStatements()

Yes1.0int getMaxTableNameLength()

Yes1.0int getMaxTablesInSelect()

Yes1.0int getMaxUserNameLength()

Yes1.0String getNumericFunctions()

Yes1.0ResultSet getPrimaryKeys(String, String,
String)

For the drivers for Salesforce and Oracle
Service Cloud, SchemaName and
ProcedureName must be explicit values;
they cannot be patterns.

The drivers for Apache Cassandra and
MongoDB return an empty result set.

Not supported for the drivers for Apache
Hive, Apache Spark SQL, or Impala.

Yes1.0ResultSet getProcedureColumns(String,
String, String, String)

Not supported for the drivers for Apache
Hive, Apache Spark SQL, or Impala.

The drivers for Apache Cassandra and
MongoDB return an empty result set.

Yes1.0ResultSet getProcedures(String, String,
String)

Yes1.0String getProcedureTerm()

Yes3.0int getResultSetHoldability()

Yes1.0ResultSet getSchemas()

Yes4.0ResultSet getSchemas(catalog, pattern)

Yes1.0String getSchemaTerm()

Yes1.0String getSearchStringEscape()

39Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0String getSQLKeywords()

Yes3.0int getSQLStateType()

Yes1.0String getStringFunctions()

Returns an empty result set.Yes3.0ResultSet getSuperTables(String, String,
String)

Returns an empty result set.Yes3.0ResultSet getSuperTypes(String, String,
String)

Yes1.0String getSystemFunctions()

Not supported for the drivers for Apache
Hive, Apache Spark SQL, or Impala.

Yes1.0ResultSet getTablePrivileges(String, String,
String)

Yes1.0ResultSet getTables(String, String, String,
String [])

Yes1.0ResultSet getTableTypes()

Yes1.0String getTimeDateFunctions()

Yes1.0ResultSet getTypeInfo()

Supported for Oracle only.Yes2.0 CoreResultSet getUDTs(String, String, String,
int [])

Yes1.0String getURL()

Yes1.0String getUserName()

Yes1.0ResultSet getVersionColumns(String, String,
String)

Yes2.0 Coreboolean insertsAreDetected(int)

Yes1.0boolean isCatalogAtStart()

Yes1.0boolean isReadOnly()

Yes4.0boolean isWrapperFor(Class<?> iface)

Yes3.0boolean locatorsUpdateCopy()

Yes1.0boolean nullPlusNonNullIsNull()

Yes1.0boolean nullsAreSortedAtEnd()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.440

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0boolean nullsAreSortedAtStart()

Yes1.0boolean nullsAreSortedHigh()

Yes1.0boolean nullsAreSortedLow()

Yes2.0 Coreboolean othersDeletesAreVisible(int)

Yes2.0 Coreboolean othersInsertsAreVisible(int)

Yes2.0 Coreboolean othersUpdatesAreVisible(int)

Yes2.0 Coreboolean ownDeletesAreVisible(int)

Yes2.0 Coreboolean ownInsertsAreVisible(int)

Yes2.0 Coreboolean ownUpdatesAreVisible(int)

Yes1.0boolean storesLowerCaseIdentifiers()

Yes1.0boolean
storesLowerCaseQuotedIdentifiers()

Yes1.0boolean storesMixedCaseIdentifiers()

Yes1.0boolean
storesMixedCaseQuotedIdentifiers()

Yes1.0boolean storesUpperCaseIdentifiers()

Yes1.0boolean
storesUpperCaseQuotedIdentifiers()

Yes1.0boolean
supportsAlterTableWithAddColumn()

Yes1.0boolean
supportsAlterTableWithDropColumn()

Yes1.0boolean supportsANSI92EntryLevelSQL()

Yes1.0boolean supportsANSI92FullSQL()

Yes1.0boolean supportsANSI92IntermediateSQL()

Yes2.0 Coreboolean supportsBatchUpdates()

Yes1.0boolean
supportsCatalogsInDataManipulation()

41Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0boolean
supportsCatalogsInIndexDefinitions()

Yes1.0boolean
supportsCatalogsInPrivilegeDefinitions()

Yes1.0boolean
supportsCatalogsInProcedureCalls()

Yes1.0boolean
supportsCatalogsInTableDefinitions()

Yes1.0boolean supportsColumnAliasing()

Yes1.0boolean supportsConvert()

Yes1.0boolean supportsConvert(int, int)

Yes1.0boolean supportsCoreSQLGrammar()

Yes1.0boolean supportsCorrelatedSubqueries()

Yes1.0boolean supportsDataDefinitionAndData
ManipulationTransactions()

Yes1.0boolean
supportsDataManipulationTransactionsOnly()

Yes1.0boolean
supportsDifferentTableCorrelationNames()

Yes1.0boolean supportsExpressionsInOrderBy()

Yes1.0boolean supportsExtendedSQLGrammar()

Yes1.0boolean supportsFullOuterJoins()

Yes3.0boolean supportsGetGeneratedKeys()

Yes1.0boolean supportsGroupBy()

Yes1.0boolean supportsGroupByBeyondSelect()

Yes1.0boolean supportsGroupByUnrelated()

Yes1.0boolean
supportsIntegrityEnhancementFacility()

Yes1.0boolean supportsLikeEscapeClause()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.442

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0boolean supportsLimitedOuterJoins()

Yes1.0boolean supportsMinimumSQLGrammar()

Yes1.0boolean supportsMixedCaseIdentifiers()

Yes1.0boolean
supportsMixedCaseQuotedIdentifiers()

Yes3.0boolean supportsMultipleOpenResults()

Yes1.0boolean supportsMultipleResultSets()

Yes1.0boolean supportsMultipleTransactions()

Yes3.0boolean supportsNamedParameters()

Yes1.0boolean supportsNonNullableColumns()

Yes1.0boolean
supportsOpenCursorsAcrossCommit()

Yes1.0boolean
supportsOpenCursorsAcrossRollback()

Yes1.0boolean
supportsOpenStatementsAcrossCommit()

Yes1.0boolean
supportsOpenStatementsAcrossRollback()

Yes1.0boolean supportsOrderByUnrelated()

Yes1.0boolean supportsOuterJoins()

Yes1.0boolean supportsPositionedDelete()

Yes1.0boolean supportsPositionedUpdate()

Yes2.0 Coreboolean supportsResultSetConcurrency(int,
int)

Yes3.0boolean supportsResultSetHoldability(int)

Yes2.0 Coreboolean supportsResultSetType(int)

Yes3.0boolean supportsSavePoints()

Yes1.0boolean
supportsSchemasInDataManipulation()

43Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

DatabaseMetaData Methods

Yes1.0boolean
supportsSchemasInIndexDefinitions()

Yes1.0boolean
supportsSchemasInPrivilegeDefinitions()

Yes1.0boolean
supportsSchemasInProcedureCalls()

Yes1.0boolean
supportsSchemasInTableDefinitions()

Yes1.0boolean supportsSelectForUpdate()

Yes4.0boolean
supportsStoredFunctionsUsingCallSyntax()

Yes1.0boolean supportsStoredProcedures()

Yes1.0boolean
supportsSubqueriesInComparisons()

Yes1.0boolean supportsSubqueriesInExists()

Yes1.0boolean supportsSubqueriesInIns()

Yes1.0boolean supportsSubqueriesInQuantifieds()

Yes1.0boolean supportsTableCorrelationNames()

Yes1.0boolean
supportsTransactionIsolationLevel(int)

Yes1.0boolean supportsTransactions()

Yes1.0boolean supportsUnion()

Yes1.0boolean supportsUnionAll()

Yes4.0<T> T unwrap(Class<T> iface)

Yes2.0 Coreboolean updatesAreDetected(int)

Yes1.0boolean usesLocalFilePerTable()

Yes1.0boolean usesLocalFiles()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.444

Chapter 1: JDBC Support

DataSource
The DataSource interface implements the javax.naming.Referenceable and java.io.Serializable interfaces.

CommentsSupportedVersion
Introduced

DataSource Methods

Yes2.0 OptionalConnection getConnection()

Yes2.0 OptionalConnection getConnection(String, String)

Yes2.0 Optionalint getLoginTimeout()

Yes2.0 OptionalPrintWriter getLogWriter()

Yes4.0boolean isWrapperFor(Class<?> iface)

Yes2.0 Optionalvoid setLoginTimeout(int)

Enables DataDirect Spy, which traces JDBC
information into the specified PrintWriter.

Yes2.0 Optionalvoid setLogWriter(PrintWriter)

Yes4.0<T> T unwrap(Class<T> iface)

Driver

CommentsSupportedVersion
Introduced

Driver Methods

Yes1.0boolean acceptsURL(String)

Yes1.0Connection connect(String, Properties)

Yes1.0int getMajorVersion()

Yes1.0int getMinorVersion()

Yes1.0DriverPropertyInfo [] getPropertyInfo(String,
Properties)

45Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

ParameterMetaData

CommentsSupportedVersion
Introduced

ParameterMetaData Methods

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0String getParameterClassName(int)

Yes3.0int getParameterCount()

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0int getParameterMode(int)

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0int getParameterType(int)

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0String getParameterTypeName(int)

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0int getPrecision(int)

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0int getScale(int)

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0int isNullable(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.446

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ParameterMetaData Methods

The DB2 driver supports parameter
metadata for stored procedures for
DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes3.0boolean isSigned(int)

Yes4.0boolean isWrapperFor(Class<?> iface)

Yes1.0boolean jdbcCompliant()

Yes4.0<T> T unwrap(Class<T> iface)

PooledConnection

CommentsSupportedVersion
Introduced

PooledConnection Methods

Yes2.0 Optionalvoid addConnectionEventListener(listener)

Yes4.0void addStatementEventListener(listener)

Yes2.0 Optionalvoid close()

A pooled connection object can have only
one Connection object open (the one most
recently created). The purpose of allowing
the server (PoolManager implementation)
to invoke this a second time is to give an
application server a way to take a
connection away from an application and
give it to another user (a rare occurrence).
The drivers do not support the "reclaiming"
of connections and will throw an exception.

Yes2.0 OptionalConnection getConnection()

Yes2.0 Optionalvoid
removeConnectionEventListener(listener)

Yes4.0void
removeStatementEventListener(listener)

PreparedStatement

CommentsSupportedVersion
Introduced

PreparedStatement Methods

Yes2.0 Corevoid addBatch()

47Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

PreparedStatement Methods

Yes1.0void clearParameters()

Yes1.0boolean execute()

Yes1.0ResultSet executeQuery()

Yes1.0int executeUpdate()

Yes2.0 CoreResultSetMetaData getMetaData()

Yes3.0ParameterMetaData
getParameterMetaData()

Yes4.0boolean isWrapperFor(Class<?> iface)

Supported for the Oracle driver only.

All other drivers throw an "unsupported
method" exception.

Yes2.0 Corevoid setArray(int, Array)

Yes4.0void setAsciiStream(int, InputStream)

Yes1.0void setAsciiStream(int, InputStream, int)

Yes4.0void setAsciiStream(int, InputStream, long)

Yes1.0void setBigDecimal(int, BigDecimal)

When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes4.0void setBinaryStream(int, InputStream)

When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes1.0void setBinaryStream(int, InputStream, int)

When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes4.0void setBinaryStream(int, InputStream, long)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes2.0 Corevoid setBlob(int, Blob)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.448

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

PreparedStatement Methods

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void setBlob(int, InputStream)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void setBlob(int, InputStream, long)

Yes1.0void setBoolean(int, boolean)

Yes1.0void setByte(int, byte)

When used with Blobs, the DB2 driver only
supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i.

Yes1.0void setBytes(int, byte [])

Yes4.0void setCharacterStream(int, Reader)

Yes2.0 Corevoid setCharacterStream(int, Reader, int)

Yes4.0void setCharacterStream(int, Reader, long)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 Corevoid setClob(int, Clob)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void setClob(int, Reader)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void setClob(int, Reader, long)

Yes1.0void setDate(int, Date)

Yes2.0 Corevoid setDate(int, Date, Calendar)

Yes1.0void setDouble(int, double)

Yes1.0void setFloat(int, float)

49Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

PreparedStatement Methods

Yes1.0void setInt(int, int)

Yes1.0void setLong(int, long)

For the drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB, N methods are identical to their
non-N counterparts.

Yes4.0void setNCharacterStream(int, Reader)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB,N methods
are identical to their non-N counterparts.

Yes4.0void setNCharacterStream(int, Reader, long)

For the drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB, N methods are identical to their
non-N counterparts.

Yes4.0void setNClob(int, NClob)

For the drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB, N methods are identical to their
non-N counterparts.

Yes4.0void setNClob(int, Reader)

For the drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB, N methods are identical to their
non-N counterparts.

Yes4.0void setNClob(int, Reader, long)

Yes1.0void setNull(int, int)

Yes2.0 Corevoid setNull(int, int, String)

Yes4.0void setNString(int, String)

Yes1.0void setObject(int, Object)

Yes1.0void setObject(int, Object, int)

Yes1.0void setObject(int, Object, int, int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.450

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

PreparedStatement Methods

The DB2 driver supports setting a timeout
value, in seconds, for a statement with
DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The Informix driver throws an "unsupported
method" exception.

The drivers for Salesforce and Oracle
Service Cloud ignore any value set using
this method. Use the WSTimeout connection
property to set a timeout value.

The drivers for Apache Cassandra and
MongoDB ignore any value set using this
method.

All other drivers support setting a timeout
value, in seconds, for a statement. If the
execution of the statement exceeds the
timeout value, the statement is timed out by
the database server, and the driver throws
an exception indicating that the statement
was timed out.

Yes1.0void setQueryTimeout(int)

All drivers throw "unsupported method"
exception.

No2.0 Corevoid setRef(int, Ref)

Yes1.0void setShort(int, short)

Yes4.0void setSQLXML(int, SQLXML)

Yes1.0void setString(int, String)

Yes1.0void setTime(int, Time)

Yes2.0 Corevoid setTime(int, Time, Calendar)

Yes1.0void setTimestamp(int, Timestamp)

Yes2.0 Corevoid setTimestamp(int, Timestamp,
Calendar)

This method was deprecated in JDBC 2.0.
All drivers throw "unsupported method"
exception.

No1.0void setUnicodeStream(int, InputStream,
int)

51Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

PreparedStatement Methods

Yes4.0<T> T unwrap(Class<T> iface)

All drivers throw "unsupported method"
exception.

No3.0void setURL(int, URL)

Ref

CommentsSupportedVersion
Introduced

Ref MethodsRef interface

No2.0 Core(all)

ResultSet

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes2.0 Coreboolean absolute(int)

Yes2.0 Corevoid afterLast()

Yes2.0 Corevoid beforeFirst()

Yes2.0 Corevoid cancelRowUpdates()

Yes1.0void clearWarnings()

Yes1.0void close()

Yes2.0 Corevoid deleteRow()

Yes1.0int findColumn(String)

Yes2.0 Coreboolean first()

Yes2.0 CoreArray getArray(int)

All drivers throw "unsupported method"
exception.

No2.0 CoreArray getArray(String)

Yes1.0InputStream getAsciiStream(int)

Yes1.0InputStream getAsciiStream(String)

Yes2.0 CoreBigDecimal getBigDecimal(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.452

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes1.0BigDecimal getBigDecimal(int, int)

Yes2.0 CoreBigDecimal getBigDecimal(String)

Yes1.0BigDecimal getBigDecimal(String, int)

The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Yes1.0InputStream getBinaryStream(int)

The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Yes1.0InputStream getBinaryStream(String)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes2.0 CoreBlob getBlob(int)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes2.0 CoreBlob getBlob(String)

Yes1.0boolean getBoolean(int)

Yes1.0boolean getBoolean(String)

Yes1.0byte getByte(int)

Yes1.0byte getByte(String)

53Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

ResultSet Methods

The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Yes1.0byte [] getBytes(int)

The DB2 driver supports for all DB2 versions
when retrieving BINARY, VARBINARY, and
LONGVARBINARY data. The DB2 driver
only supports with DB2 V8.x and higher for
Linux/UNIX/Windows, DB2 for z/OS (all
versions), and DB2 for i when retrieving Blob
data.

Yes1.0byte [] getBytes(String)

Yes2.0 CoreReader getCharacterStream(int)

Yes2.0 CoreReader getCharacterStream(String)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 CoreClob getClob(int)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes2.0 CoreClob getClob(String)

Yes2.0 Coreint getConcurrency()

All drivers throw "unsupported method"
exception.

No1.0String getCursorName()

Yes1.0Date getDate(int)

Yes2.0 CoreDate getDate(int, Calendar)

Yes1.0Date getDate(String)

Yes2.0 CoreDate getDate(String, Calendar)

Yes1.0double getDouble(int)

Yes1.0double getDouble(String)

Yes2.0 Coreint getFetchDirection()

Yes2.0 Coreint getFetchSize()

Yes1.0float getFloat(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.454

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes1.0float getFloat(String)

Yes4.0int getHoldability()

Yes1.0int getInt(int)

Yes1.0int getInt(String)

Yes1.0long getLong(int)

Yes1.0long getLong(String)

Yes1.0ResultSetMetaData getMetaData()

Yes4.0Reader getNCharacterStream(int)

Yes4.0Reader getNCharacterStream(String)

Yes4.0NClob getNClob(int)

Yes4.0NClob getNClob(String)

Yes4.0String getNString(int)

Yes4.0String getNString(String)

The DB2 driver returns a Long object when
called on Bigint columns.

Yes1.0Object getObject(int)

The Oracle and Sybase drivers support the
Map argument. For all other drivers, the Map
argument is ignored.

Yes2.0 CoreObject getObject(int, Map)

Yes1.0Object getObject(String)

The Oracle and Sybase drivers support the
Map argument. For all other drivers, the Map
argument is ignored.

Yes2.0 CoreObject getObject(String, Map)

All drivers throw "unsupported method"
exception.

No2.0 CoreRef getRef(int)

All drivers throw "unsupported method"
exception.

No2.0 CoreRef getRef(String)

Yes2.0 Coreint getRow()

Yes1.0short getShort(int)

Yes1.0short getShort(String)

55Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes4.0SQLXML getSQLXML(int)

Yes4.0SQLXML getSQLXML(String)

Yes2.0 CoreStatement getStatement()

Yes1.0String getString(int)

Yes1.0String getString(String)

Yes1.0Time getTime(int)

Yes2.0 CoreTime getTime(int, Calendar)

Yes1.0Time getTime(String)

Yes2.0 CoreTime getTime(String, Calendar)

Yes1.0Timestamp getTimestamp(int)

Yes2.0 CoreTimestamp getTimestamp(int, Calendar)

Yes1.0Timestamp getTimestamp(String)

Yes2.0 CoreTimestamp getTimestamp(String, Calendar)

Yes2.0 Coreint getType()

This method was deprecated in JDBC 2.0.
All drivers throw "unsupported method"
exception.

No1.0InputStream getUnicodeStream(int)

This method was deprecated in JDBC 2.0.
All drivers throw "unsupported method"
exception.

No1.0InputStream getUnicodeStream(String)

All drivers throw "unsupported method"
exception.

No3.0URL getURL(int)

All drivers throw "unsupported method"
exception.

No3.0URL getURL(String)

Yes1.0SQLWarning getWarnings()

Yes2.0 Corevoid insertRow()

Yes2.0 Coreboolean isAfterLast()

Yes2.0 Coreboolean isBeforeFirst()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.456

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes4.0boolean isClosed()

Yes2.0 Coreboolean isFirst()

Yes2.0 Coreboolean isLast()

Yes4.0boolean isWrapperFor(Class<?> iface)

Yes2.0 Coreboolean last()

Yes2.0 Corevoid moveToCurrentRow()

Yes2.0 Corevoid moveToInsertRow()

Yes1.0boolean next()

Yes2.0 Coreboolean previous()

Yes2.0 Corevoid refreshRow()

Yes2.0 Coreboolean relative(int)

Yes2.0 Coreboolean rowDeleted()

Yes2.0 Coreboolean rowInserted()

Yes2.0 Coreboolean rowUpdated()

Yes2.0 Corevoid setFetchDirection(int)

Yes2.0 Corevoid setFetchSize(int)

Yes4.0<T> T unwrap(Class<T> iface)

All drivers throw "unsupported method"
exception.

No3.0void updateArray(int, Array)

All drivers throw "unsupported method"
exception.

No3.0void updateArray(String, Array)

Yes2.0 Corevoid updateAsciiStream(int, InputStream,
int)

Yes4.0void updateAsciiStream(int, InputStream,
long)

Yes4.0void updateAsciiStream(String, InputStream)

Yes2.0 Corevoid updateAsciiStream(String, InputStream,
int)

57Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

ResultSet Methods

Yes4.0void updateAsciiStream(String, InputStream,
long)

Yes2.0 Corevoid updateBigDecimal(int, BigDecimal)

Yes2.0 Corevoid updateBigDecimal(String, BigDecimal)

Yes4.0void updateBinaryStream(int, InputStream)

Yes2.0 Corevoid updateBinaryStream(int, InputStream,
int)

Yes4.0void updateBinaryStream(int, InputStream,
long)

Yes4.0void updateBinaryStream(String,
InputStream)

Yes2.0 Corevoid updateBinaryStream(String,
InputStream, int)

Yes4.0void updateBinaryStream(String,
InputStream, long)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes3.0void updateBlob(int, Blob)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void updateBlob(int, InputStream)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void updateBlob(int, InputStream, long)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.458

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSet Methods

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes3.0void updateBlob(String, Blob)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void updateBlob(String, InputStream)

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS (all versions), and DB2 for i.

All other drivers support using with data
types that map to the JDBC
LONGVARBINARY data type.

Yes4.0void updateBlob(String, InputStream, long)

Yes2.0 Corevoid updateBoolean(int, boolean)

Yes2.0 Corevoid updateBoolean(String, boolean)

Yes2.0 Corevoid updateByte(int, byte)

Yes2.0 Corevoid updateByte(String, byte)

Yes2.0 Corevoid updateBytes(int, byte [])

Yes2.0 Corevoid updateBytes(String, byte [])

Yes4.0void updateCharacterStream(int, Reader)

Yes2.0 Corevoid updateCharacterStream(int, Reader,
int)

Yes4.0void updateCharacterStream(int, Reader,
long)

Yes4.0void updateCharacterStream(String,
Reader)

Yes2.0 Corevoid updateCharacterStream(String,
Reader, int)

Yes4.0void updateCharacterStream(String,
Reader, long)

59Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

ResultSet Methods

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0void updateClob(int, Clob)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void updateClob(int, Reader)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void updateClob(int, Reader, long)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes3.0void updateClob(String, Clob)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void updateClob(String, Reader)

Drivers support using with data types that
map to the JDBC LONGVARBINARY data
type.

Yes4.0void updateClob(String, Reader, long)

Yes2.0 Corevoid updateDate(int, Date)

Yes2.0 Corevoid updateDate(String, Date)

Yes2.0 Corevoid updateDouble(int, double)

Yes2.0 Corevoid updateDouble(String, double)

Yes2.0 Corevoid updateFloat(int, float)

Yes2.0 Corevoid updateFloat(String, float)

Yes2.0 Corevoid updateInt(int, int)

Yes2.0 Corevoid updateInt(String, int)

Yes2.0 Corevoid updateLong(int, long)

Yes2.0 Corevoid updateLong(String, long)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNCharacterStream(int, Reader)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNCharacterStream(int, Reader,
long)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.460

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSet Methods

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNCharacterStream(String,
Reader)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNCharacterStream(String,
Reader, long)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(int, NClob)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(int, Reader)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(int, Reader, long)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(String, NClob)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(String, Reader)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNClob(String, Reader, long)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNString(int, String)

For the drivers for Salesforce, Oracle
Service Cloud, and MongoDB, N methods
are identical to their non-N counterparts.

Yes4.0void updateNString(String, String)

Yes2.0 Corevoid updateNull(int)

Yes2.0 Corevoid updateNull(String)

Yes2.0 Corevoid updateObject(int, Object)

Yes2.0 Corevoid updateObject(int, Object, int)

Yes2.0 Corevoid updateObject(String, Object)

Yes2.0 Corevoid updateObject(String, Object, int)

61Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

ResultSet Methods

All drivers throw "unsupported method"
exception.

No3.0void updateRef(int, Ref)

All drivers throw "unsupported method"
exception.

No3.0void updateRef(String, Ref)

Yes2.0 Corevoid updateRow()

Yes2.0 Corevoid updateShort(int, short)

Yes2.0 Corevoid updateShort(String, short)

Yes4.0void updateSQLXML(int, SQLXML)

Yes4.0void updateSQLXML(String, SQLXML)

Yes2.0 Corevoid updateString(int, String)

Yes2.0 Corevoid updateString(String, String)

Yes2.0 Corevoid updateTime(int, Time)

Yes2.0 Corevoid updateTime(String, Time)

Yes2.0 Corevoid updateTimestamp(int, Timestamp)

Yes2.0 Corevoid updateTimestamp(String, Timestamp)

Yes1.0boolean wasNull()

ResultSetMetaData

CommentsSupportedVersion
Introduced

ResultSetMetaData Methods

Yes1.0String getCatalogName(int)

Yes2.0 CoreString getColumnClassName(int)

Yes1.0int getColumnCount()

Yes1.0int getColumnDisplaySize(int)

Yes1.0String getColumnLabel(int)

Yes1.0String getColumnName(int)

Yes1.0int getColumnType(int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.462

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

ResultSetMetaData Methods

Yes1.0String getColumnTypeName(int)

Yes1.0int getPrecision(int)

Yes1.0int getScale(int)

Yes1.0String getSchemaName(int)

Yes1.0String getTableName(int)

Yes1.0boolean isAutoIncrement(int)

Yes1.0boolean isCaseSensitive(int)

Yes1.0boolean isCurrency(int)

Yes1.0boolean isDefinitelyWritable(int)

Yes1.0int isNullable(int)

Yes1.0boolean isReadOnly(int)

Yes1.0boolean isSearchable(int)

Yes1.0boolean isSigned(int)

Yes4.0boolean isWrapperFor(Class<?> iface)

Yes1.0boolean isWritable(int)

Yes4.0<T> T unwrap(Class<T> iface)

RowSet

CommentsSupportedVersion
Introduced

RowSet Methods

No2.0 Optional(all)

63Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

SavePoint

CommentsSupportedVersion
Introduced

SavePoint Methods

The DB2 driver only supports with DB2 V8.x
and higher for Linux/UNIX/Windows, DB2
for z/OS ((all versions), and DB2 for i.

Yes3.0(all)

Statement

CommentsSupportedVersion
Introduced

Statement Methods

All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

Yes2.0 Corevoid addBatch(String)

The DB2 driver cancels the execution of the
statement with DB2 V8.x and higher for

Yes1.0void cancel()

Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. If the statement is canceled
by the database server, the driver throws
an exception indicating that it was canceled.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The drivers for Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala, Informix,
Progess OpenEdge, Oracle Service Cloud,
Salesforce and MongoDB throw an
"unsupported method" exception.

The Greenplum, Oracle, PostgreSQL, SQL
Server, Sybase, and Amazon Redshift
drivers cancel the execution of the
statement. If the statement is canceled by
the database server, the driver throws an
exception indicating that it was canceled.

Yes2.0 Corevoid clearBatch()

Yes1.0void clearWarnings()

Yes1.0void close()

All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

Yes1.0boolean execute(String)

Yes3.0boolean execute(String, int)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.464

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Statement Methods

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Yes3.0boolean execute(String, int [])

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Yes3.0boolean execute(String, String [])

Yes2.0 Coreint [] executeBatch()

All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

Yes1.0ResultSet executeQuery(String)

All drivers throw "invalid method call"
exception for PreparedStatement and
CallableStatement.

Yes1.0int executeUpdate(String)

Yes3.0int executeUpdate(String, int)

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Yes3.0int executeUpdate(String, int [])

Supported for the Oracle and SQL Server
drivers.

All other drivers throw "unsupported method"
exception.

Yes3.0int executeUpdate(String, String [])

Yes2.0 CoreConnection getConnection()

Yes2.0 Coreint getFetchDirection()

Yes2.0 Coreint getFetchSize()

The DB2, SQL Server, and Sybase drivers
return the last value inserted into an identity

Yes3.0ResultSet getGeneratedKeys()

column. If an identity column does not exist
in the table, the drivers return an empty
result set.

The Informix driver returns the last value
inserted into a Serial or Serial8 column. If a
Serial or Serial8 column does not exist in
the table, the driver returns an empty result
set.

65Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

Statement Methods

The Oracle driver returns the ROWID of the
last row that was inserted.

The drivers for Apache Cassandra,
Salesforce, Oracle Service Cloud, and
MongoDB return the ID of the last row that
was inserted.

Auto-generated keys are not supported in
any of the other drivers.

Yes1.0int getMaxFieldSize()

Yes1.0int getMaxRows()

Yes1.0boolean getMoreResults()

Yes3.0boolean getMoreResults(int)

The DB2 driver returns the timeout value,
in seconds, set for the statement with

Yes1.0int getQueryTimeout()

DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. The DB2 driver returns 0
with other DB2 versions.

The Informix and Progress OpenEdge
drivers return 0.

The drivers for Apache Cassandra, Apache
Hive, Apache Spark SQL, Impala,
Greenplum, Oracle, PostgreSQL,
SQL Server, Sybase, and Amazon Redshift
return the timeout value, in seconds, set for
the statement.

The drivers for Salesforce and Oracle
Service Cloud return an "unsupported
method" exception.

Yes1.0ResultSet getResultSet()

Yes2.0 Coreint getResultSetConcurrency()

Yes3.0int getResultSetHoldability()

Yes2.0 Coreint getResultSetType()

Yes1.0int getUpdateCount()

Yes1.0SQLWarning getWarnings()

Yes4.0boolean isClosed()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.466

Chapter 1: JDBC Support

CommentsSupportedVersion
Introduced

Statement Methods

Yes4.0boolean isPoolable()

Yes4.0boolean isWrapperFor(Class<?> iface)

Throws "unsupported method" exception.No1.0void setCursorName(String)

Ignored.Yes1.0void setEscapeProcessing(boolean)

Yes2.0 Corevoid setFetchDirection(int)

Yes2.0 Corevoid setFetchSize(int)

Yes1.0void setMaxFieldSize(int)

Yes1.0void setMaxRows(int)

Yes4.0void setPoolable(boolean)

The DB2 driver supports setting a timeout
value, in seconds, for a statement with

Yes1.0void setQueryTimeout(int)

DB2 V8.x and higher for
Linux/UNIX/Windows and DB2 V8.1 and
higher for z/OS. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.
The DB2 driver throws an "unsupported
method" exception with other DB2 versions.

The Informix driver throws an "unsupported
method" exception.
The drivers for Greenplum, Apache Hive,
Apache Spark SQL, Impala, Oracle,
PostgreSQL, Progress OpenEdge,
SQL Server, Sybase, and Amazon Redshift
support setting a timeout value, in seconds,
for a statement. If the execution of the
statement exceeds the timeout value, the
statement is timed out by the database
server, and the driver throws an exception
indicating that the statement was timed out.

The drivers for Salesforce and Oracle
Service Cloud ignore any value set using
this method. Use the WSTimeout connection
property to set a timeout.

67Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

CommentsSupportedVersion
Introduced

Statement Methods

The drivers for Apache Cassandra and
MongoDB driver ignore any value set using
this method.

Yes4.0<T> T unwrap(Class<T> iface)

StatementEventListener

CommentsSupportedVersion
Introduced

StatementEventListener Methods

Yes4.0void statementClosed(event)

Yes4.0void statementErrorOccurred(event)

Struct

CommentsSupportedVersion
Introduced

Struct Methods

Supported for the Oracle driver only. All
other drivers throw "unsupported method"
exception.

Yes2.0(all)

XAConnection

CommentsSupportedVersion
Introduced

XAConnection Methods

Supported for all drivers except DB2 V8.1
for z/OS, Greenplum, Apache Hive, Apache
Spark SQL, Impala, PostgreSQL, and
Amazon Redshift.

Yes2.0 Optional(all)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.468

Chapter 1: JDBC Support

XADataSource

CommentsSupportedVersion
Introduced

XADataSource Methods

Supported for all drivers except DB2 V8.1
for z/OS, Greenplum, Apache Hive, Apache
Spark SQL, Impala, PostgreSQL, and
Amazon Redshift.

Yes2.0 Optional(all)

XAResource

CommentsSupportedVersion
Introduced

XAResource Methods

Supported for all drivers except DB2 V8.1
for z/OS, Greenplum, Apache Hive, Apache
Spark SQL, Impala, PostgreSQL, and
Amazon Redshift.

Yes2.0 Optional(all)

69Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Supported Functionality

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.470

Chapter 1: JDBC Support

2
JDBC Extensions

This chapter describes the JDBC extensions provided by the com.ddtek.jdbc.extensions package. The interfaces
in this package are:

For more informationDescriptionInterface/Class

See DatabaseMetaData Interface
(Salesforce Driver) on page 73.

The method in this interface is used with
the Salesforce driver to extend the standard
JDBC metadata results returned by the
DatabaseMetaData.getColumns() method
to include an additional column.

DatabaseMetadata

See DDBulkLoad Interface on page
73.

Refer to "Using DataDirect Bulk Load"
in the DataDirect Connect Series for
JDBC User’s Guide.

Methods that allow your application to
perform bulk load operations.

DDBulkLoad

71Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

For more informationDescriptionInterface/Class

See ExtConnection Interface on page
80.

Refer to "Using Client Information" in
the DataDirect Connect Series for
JDBC User’s Guide.

Refer to "Using Reauthentication" in
the DataDirect Connect Series for
JDBC User’s Guide.
See Statement Pool Monitor on page
347.

Methods that allow you to perform the
following actions:

• Store and return client information.

• Switch the user associated with a
connection to another user to minimize
the number of connections that are
required in a connection pool.

• Access the DataDirect Statement Pool
Monitor from a connection.

ExtConnection

See ExtLogControl Class on page 85.

See Tracking JDBC Calls with
DataDirect Spy on page 325.

Methods that allow you to determine if
DataDirect Spy logging is enabled and
turning on and off DataDirect Spy logging
if enabled.

ExtLogControl

For details, see the following topics:

• Using JDBC Wrapper Methods to Access JDBC Extensions

• DatabaseMetaData Interface (Salesforce Driver)

• DDBulkLoad Interface

• ExtConnection Interface

• ExtDatabaseMetaData Interface

• ExtLogControl Class

Using JDBC Wrapper Methods to Access JDBC
Extensions

The Wrapper methods allow an application to access vendor-specific classes. The following example shows
how to access the DataDirect-specific ExtConnection class using the Wrapper methods:

ExtStatementPoolMonitor monitor = null;
Class<ExtConnection> cls = ExtConnection.class;
if (con.isWrapperFor(cls)) {

ExtConnection extCon = con.unwrap(cls);
extCon.setClientUser("Joe Smith");
monitor = extCon.getStatementPoolMonitor();

}
...
if(monitor != null) {

long hits = monitor.getHitCount();
long misses = monitor.getMissCount();

}
...

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.472

Chapter 2: JDBC Extensions

DatabaseMetaData Interface (Salesforce Driver)
The Salesforce driver extends the standard JDBC metadata results returned by the
DatabaseMetaData.getColumns() method to include an additional column.

DescriptionData TypeColumn

Provides an indication of whether the column can be used as an
External ID. External ID columns can be used as the lookup column
for insert and upsert operations and foreign-key relationship values.
Valid values are:

• YES: The column can be used as an external ID.

• NO: The column cannot be used as an external ID.

The standard catalog table SYSTEM_COLUMNS is also extended to
include the IS_EXTERNAL_ID column.

VARCHAR (3), NOT
NULL

IS_EXTERNAL_ID

DDBulkLoad Interface
DescriptionInterface Methods

Clears all warnings that were generated by this DDBulkLoad object.void clearWarnings()

Releases a DDBulkLoad object’s resources immediately instead of
waiting for the connection to close.

void close()

Exports all rows from the table into the specified CSV file specified by
a file reference. The table is specified using the setTableName()
method. If the CSV file does not already exist, the driver creates it when
the export() method is executed. In addition, the driver creates a bulk
load configuration file matching the CSV file. Refer to "Exporting Data
to a CSV File" in theDataDirect Connect Series for JDBCUser’s Guide
for more information. This method also returns the number of rows that
were successfully exported from the table.

long export(File)

Exports all rows from the specified ResultSet into the CSV file specified
by a file reference. If the CSV file does not already exist, the driver
creates it when the export() method is executed. In addition, the driver
creates a bulk load configuration file matching the CSV file. Refer to
"Exporting Data to a CSV File" in the DataDirect Connect Series for
JDBC User’s Guide for more information.

This method also returns the number of rows that were successfully
exported from the ResultSet object.

long export(ResultSet, File)

73Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DatabaseMetaData Interface (Salesforce Driver)

DescriptionInterface Methods

Exports all rows from the table into the CSV file specified by name.
The table is specified using the setTableName() method. If the CSV
file does not already exist, the driver creates it when the export() method
is executed. In addition, the driver creates a bulk load configuration file
matching the CSV file. Refer to "Exporting Data to a CSV File" in the
DataDirect Connect Series for JDBCUser’s Guide for more information.

This method also returns the number of rows that were successfully
exported from the table.

long export(String)

Returns the number of rows that the driver sends at a time when bulk
loading data.

long getBatchSize()

Returns the maximum size (in bytes) of binary data that can be exported
to the CSV file. Once this size is reached, binary data is written to one
or multiple external overflow files. Refer to "External Overflow Files" in
the DataDirect Connect Series for JDBC User’s Guide for more
information.

long getBinaryThreshold()

Returns the maximum size (in bytes) of character data that can be
exported to the CSV file. Once this size is reached, character data is
written to one or multiple external overflow files. Refer to "External
Overflow Files" in theDataDirect Connect Series for JDBCUser’s Guide
for more information.

long getCharacterThreshold()

Returns the code page that the driver uses for the CSV file. Refer to
"Character Set Conversions" in theDataDirect Connect Series for JDBC
User’s Guide for more information.

String getCodePage()

Returns the name of the bulk load configuration file. Refer to "Bulk
Load Configuration File" in the DataDirect Connect Series for JDBC
User’s Guide for more information.

String getConfigFile()

Returns the name of the discard file. The discard file contains rows that
were unable to be loaded as the result of a bulk load operation. Refer
to "Discard File" in the DataDirect Connect Series for JDBC User’s
Guide for more information.

String getDiscardFile()

Returns the number of errors that can occur before this DDBulkLoad
object ends the bulk load operation.

long getErrorTolerance()

Returns the name of the log file. The log file records information about
each bulk load operation. Refer to "Logging" in theDataDirect Connect
Series for JDBC User’s Guide for more information.

String getLogFile()

Returns the maximum number of rows from the CSV file or ResultSet
object the driver will load when the load() method is executed.

long getNumRows()

Returns the properties specified for a DDBulkLoad object. Properties
are specified using the setProperties() method.

Properties getProperties()

Returns the size (in KB) of the buffer that is used to read the CSV file.long getReadBufferSize()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.474

Chapter 2: JDBC Extensions

DescriptionInterface Methods

Returns the position (number of the row) in a CSV file or ResultSet
object from which the driver starts loading. The position is specified
using the setStartPosition() method.

long getStartPosition()

Returns the name of the table to which the data is loaded into or
exported from. Refer to "Loading Data From a ResultSet Object,"
"Loading Data From a CSV File," and "Exporting Data to a CSV File"
in the DataDirect Connect Series for JDBC User’s Guide for more
information.

void getTableName()

Returns the number of seconds the bulk load operation requires to
complete before it times out. The timeout is specified using the
setTimeout() method.

long getTimeout()

Returns any warnings generated by this DDBulkLoad object.SQLWarning getWarnings()

Returns the maximum number of warnings that can occur. Once the
maximum number is reached, the bulk load operation ends.

long getWarningTolerance()

Loads data from the CSV file specified by a file reference into a table.
The table is specified using the setTableName() method. This method
also returns the number of rows that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file. If a discard file is
created using the setDiscardFile() method, rows that were unable to
be loaded are recorded in the discard file. Refer to "Logging" and
"Discard File" in the DataDirect Connect Series for JDBC User’s Guide
for more information.

Before the bulk load operation is performed, your application can verify
that the data in the CSV file is compatible with the structure of the target
table using the validateTableFromFile() method.

long load(File)

Loads data from the CSV file specified by file name into a table. The
table is specified using the setTableName() method. This method also
returns the number of rows that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file. If a discard file is
created using the setDiscardFile() method, rows that were unable to
be loaded are recorded in the discard file. Refer to "Logging" and
"Discard File" in the DataDirect Connect Series for JDBC User’s Guide
for more information.

Before the bulk load operation is performed, your application can verify
that the data in the CSV file is compatible with the structure of the target
table using the validateTableFromFile() method.

long load(String)

75Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DDBulkLoad Interface

DescriptionInterface Methods

Loads data from a ResultSet object into the table specified using the
setTableName() method. This method also returns the number of rows
that have been successfully loaded.

If logging is enabled using the setLogFile() method, information about
the bulk load operation is recorded in the log file. Refer to "Logging" in
the DataDirect Connect Series for JDBC User’s Guide for more
information.

The structure of the table that produced the ResultSet object must
match the structure of the target table. If not, the driver throws an
exception.

long load(ResultSet)

Specifies the number of rows that the driver sends at a time when bulk
loading data. Performance can be improved by increasing the number
of rows the driver loads at a time because fewer network round trips
are required. Be aware that increasing the number of rows that are
loaded also causes the driver to consume more memory on the client.

If unspecified, the driver uses a value of 2048.

void setBatchSize(long)

Specifies the maximum size (in bytes) of binary data to be exported to
the CSV file. Any column with data over this threshold is exported into
individual external overflow files and a marker of the format
{DD LOBFILE "filename"} is placed in the CSV file to signify that
the data for this column is located in an external file. The format for
overflow file names is:

csv_filename_xxxxxx.lob

where:

csv_filename

is the name of the CSV file.

xxxxxx

is a 6-digit number that increments the overflow file.

For example, if multiple overflow files are created for a CSV file named
CSV1, the file names would look like this:

CSV1.000001.lob
CSV1.000002.lob
CSV1.000003.lob
...

If set to -1, the driver does not overflow binary data to external files.
If unspecified, the driver uses a value of 4096.

Refer to "External Overflow Files" in the DataDirect Connect Series for
JDBC User’s Guide for more information.

void setBinaryThreshold(long)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.476

Chapter 2: JDBC Extensions

DescriptionInterface Methods

Specifies the maximum size (in bytes) of character data to be exported
to the CSV file. Any column with data over this threshold is exported
into individual external overflow files and a marker of the format
{DD LOBFILE "filename"} is placed in the CSV file to signify that
the data for this column is located in an external file. The format for
overflow file names is:

csv_filename_xxxxxx.lob

where:

csv_filename

is the name of the CSV file.

xxxxxx

is a 6-digit number that increments the overflow file.

For example, if multiple overflow files are created for a CSV file named
CSV1, the file names would look like this:

CSV1.000001.lob
CSV1.000002.lob
CSV1.000003.lob
...

If set to -1, the driver does not overflow character data to external
files.If unspecified, the driver uses a value of 4096.

Refer to "External Overflow Files" in the DataDirect Connect Series for
JDBC User’s Guide for more information.

void setCharacterThreshold(long)

Specifies the code page the driver uses for the CSV file. Refer to
"Character Set Conversions" in theDataDirect Connect Series for JDBC
User’s Guide for more information.

void setCodePage(String)

Specifies the fully qualified directory and file name of the bulk load
configuration file. If the Column Info section in the bulk load
configuration file is specified, the driver uses it to map the columns in
the CSV file to the columns in the target table when performing a bulk
load operation.

If unspecified, the name of the bulk load configuration file is assumed
to be csv_filename.xml, where csv_filename is the file name of the
CSV file.

If set to an empty string, the driver does not try to use the bulk load
configuration file and reads all data from the CSV file as character data.

Refer to "Bulk Load Configuration File" in theDataDirect Connect Series
for JDBC User’s Guide for more information.

void setConfigFile(String)

77Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DDBulkLoad Interface

DescriptionInterface Methods

Specifies the fully qualified directory and file name of the discard file.
The discard file contains rows that were unable to be loaded from a
CSV file as the result of a bulk load operation. After fixing the reported
issues in the discard file, the bulk load can be reissued, using the
discard file as the CSV file. If unspecified, a discard file is not created.
Refer to "Discard File" in the DataDirect Connect Series for JDBC
User’s Guide for more information.

void setDiscardFile(String)

Specifies the maximum number of errors that can occur. Once the
maximum number is reached, the bulk load operation ends. Errors are
written to the log file. If set to 0, no errors are tolerated; the bulk load
operation fails if any error is encountered. Any rows that were processed
before the error occurred are loaded. If unspecified or set to -1, an
infinite number of errors are tolerated.

void setErrorTolerance(long)

Specifies the fully qualified directory and file name of the log file. The
log file records information about each bulk load operation.If unspecified,
a log file is not created. Refer to "Logging" in the DataDirect Connect
Series for JDBC User’s Guide for more information.

void setLogFile(String)

Specifies the maximum number of rows from the CSV file or ResultSet
object the driver will load.

void setNumRows()

Specifies one or more of the following properties for a DDBulkLoad
object:

tableName numRows
codePage binaryThreshold
timeout characterThreshold
logFile errorTolerance
discardFile warningTolerance
configFile readBufferSize
startPosition batchSize
operation

Except for the operation property, these properties also can be set
using the corresponding setxxx() methods, which provide a description
of the values that can be set.

The operation property defines which type of bulk operation will be
performed when a load method is called. The operation property accepts
the following values: insert, update, delete, or upsert. The default
value is insert. Refer to "Specifying the Bulk Load Operation" in the
DataDirect Connect Series for JDBCUser’s Guide for more information.

void setProperties(Properties)

Specifies the size (in KB) of the buffer that is used to read the CSV file.
If unspecified, the driver uses a value of 2048.

void setReadBufferSize(long)

Specifies the position (number of the row) in a CSV file or ResultSet
object from which the bulk load operation starts. For example, if a value
of 10 is specified, the first 9 rows of the CSV file are skipped and the
first row loaded is row 10.

void setStartPosition()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.478

Chapter 2: JDBC Extensions

DescriptionInterface Methods

When loading data into a table, specifies the name of the table into
which the data is loaded (tablename).

Optionally, for the Salesforce driver, you can specify the column names
that identify which columns to update in the table
(destinationColumnList). Specifying column names is useful when
loading data from a CSV file into a table. The column names used in
the column list must be the names reported by the driver for the columns
in the table. For example, if you are loading data into the Salesforce
system column NAME, the column list must identify the column as
SYS_NAME.

If destinationColumnList is not specified, a one-to-one mapping is
performed between the columns in the CSV file and the columns in the
table.

destinationColumnList has the following format:

(destColumnName [,destColumnName]...)

where:

destColumnName

is the name of the column in the table to be updated.

The number of specified columns must match the number of columns
in the CSV file. For example, the following call tells the driver to update
the Name, Address, City, State, PostalCode, Phone, and Website
columns:

bulkload.setTableName("account(Name, Address,
City,State, PostalCode, Phone, Website)")

When exporting data from a table, specifies the name of the table from
which the data is exported. If the specified table does not exist, the
driver throws an exception. Refer to "Loading Data From a ResultSet
Object," "Loading Data From a CSV File," and "Exporting Data to a
CSV File" in the DataDirect Connect Series for JDBC User’s Guide for
more information.

void setTableName(tablename
([destinationColumnList]))

Sets the maximum number of seconds that can elapse for this bulk
load operation to complete. Once this number is reached, the bulk load
operation times out.

void setTimeout(long)

79Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DDBulkLoad Interface

DescriptionInterface Methods

Specifies the maximum number of warnings that can occur. Once the
maximum is reached, the bulk load operation ends. Warnings are written
to the log file.

If set to 0, no warnings are tolerated; the bulk load operation fails if any
warning is encountered.

If unspecified or set to -1, an infinite number of warnings are tolerated.

void setWarningTolerance(long)

Verifies the metadata in the bulk load configuration file against the
structure of the table to which the data is loaded. This method is used
to ensure that the data in a CSV file is compatible with the structure of
the target table before the actual bulk load operation is performed. The
driver performs checks to detect mismatches of the following types:

Data types

Column sizes

Code pages

Column info

This method returns a Properties object with an entry for each of these
checks:

• If no mismatches are found, the Properties object does not contain
any messages.

• If minor mismatches are found, the Properties object lists the
problems.

• If problems are detected that would prevent a successful bulk load
operation, for example, if the target table does not exist, the driver
throws an exception.

Refer to "Verifying the Bulk Load Configuration File for Database
Connections" in the DataDirect Connect Series for JDBC User’s Guide
for more information.

Properties validateTableFromFile()

ExtConnection Interface
The methods of this interface are supported for all drivers.

DescriptionExtConnection Interface Methods

Closes the current connection and marks the connection as closed.
This method does not attempt to obtain any locks when closing the
connection. If subsequent operations are performed on the connection,
the driver throws an exception.

void abortConnection()

Supported by the Oracle driver only for use with Oracle VARRAY and
TABLE data types. Creates an array object.

Connection createArray(String, Object[])

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.480

Chapter 2: JDBC Extensions

DescriptionExtConnection Interface Methods

Returns the accounting client information on the connection or an empty
string if the accounting client information value or the connection has
not been set.

If getting accounting client information is supported by the database
and this operation fails, the driver throws an exception.

String getClientAccountingInfo()

Returns the name of the client application on the connection or an
empty string if the client name value for the connection has not been
set.

If getting client name information is supported by the database and this
operation fails, the driver throws an exception.

String getClientApplicationName()

Returns the name of the host used by the client application on the
connection or an empty string if the client hostname value in the
database has not been set.

If getting host name information is supported by the database and this
operation fails, the driver throws an exception.

String getClientHostname()

Returns the user ID of the client on the connection or an empty string
if the client user ID value for the connection has not been set. The
user ID may be different from the user ID establishing the connection.

If getting user ID application information is supported by the database
and this operation fails, the driver throws an exception.

String getClientUser()

Returns the current user of the connection. If reauthentication was
performed on the connection, the current user may be different than
the user that created the connection. For the DB2 and Oracle drivers,
the current user is the same as the user reported by
DatabaseMetaData.getUserName(). For the SQL Server driver, the
current user is the login user name. DatabaseMetaData.getUserName()
reports the user name the login user name is mapped to in the
database.

Refer to "Using Reauthentication" in the DataDirect Connect Series for
JDBC User’s Guide for more information.

String getCurrentUser()

Supported by the SQL Server driver to return the network timeout. The
network timeout is the maximum time (in milliseconds) that a connection,
or objects created by a connection, will wait for the database to reply
to an application request. A value of 0 means that no network timeout
exists.

See void setNetworkTimeout(int) for details about setting a network
timeout.

int getNetworkTimeout()

Returns an ExtStatementPoolMonitor object for the statement pool
associated with the connection. If the connection does not have a
statement pool, this method returns null. See Using DataDirect-Specific
Methods to Access the Statement Pool Monitor on page 348 for more
information.

ExtStatementPoolMonitor
getStatementPoolMonitor()

81Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

ExtConnection Interface

DescriptionExtConnection Interface Methods

Specifies a non-null string that resets the current user on the connection
to the user that created the connection. It also restores the current
schema, current path, or current database to the original value used
when the connection was created. If reauthentication was performed
on the connection, this method is useful to reset the connection to the
original user.

For the SQL Server driver, the current user is the login user name.The
driver throws an exception in the following circumstances:

• The driver cannot change the current user to the initial user.

• A transaction is active on the connection.

void resetUser(String)

Specifies a non-null string that sets the accounting client information
on the connection. Some databases include this information in their
usage reports. The maximum length allowed for accounting information
for a particular database can be determined by calling the
ExtDatabaseMetaData.getClientAccountingInfoLength() method. If the
length of the information specified is longer than the maximum length
allowed, the information is truncated to the maximum length, and the
driver generates a warning.

If setting accounting client information is supported by the database
and this operation fails, the driver throws an exception.

void setClientAccountingInfo(String)

Specifies a non-null string that sets the name of the client application
on the connection. The maximum client name length allowed for a
particular database can be determined by calling the
ExtDatabaseMetaData.getClientApplicationNameLength() method. If
the length of the client application name specified is longer than the
maximum name length allowed, the name is truncated to the maximum
length allowed, and the driver generates a warning.

If setting client name information is supported by the database and this
operation fails, the driver throws an exception.

void setClientApplicationName(String)

Specifies a non-null string that sets the name of the host used by the
client application on the connection. The maximum hostname length
allowed for a particular database can be determined by calling the
ExtDatabaseMetaData.getClientHostnameLength() method. If the length
of the hostname specified is longer than the maximum hostname length
allowed, the hostname is truncated to the maximum hostname length,
and the driver generates a warning.

If setting hostname information is supported by the database and this
operation fails, the driver throws an exception.

void setClientHostname(String)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.482

Chapter 2: JDBC Extensions

DescriptionExtConnection Interface Methods

Specifies a non-null string that sets the user ID of the client on the
connection. This user ID may be different from the user ID establishing
the connection. The maximum user ID length allowed for a particular
database can be determined by calling the
ExtDatabaseMetaData.getClientUserLength() method. If the length of
the user ID specified is longer than the maximum length allowed, the
user ID is truncated to the maximum user ID length, and the driver
generates a warning.

If setting user ID information is supported by the database and this
operation fails, the driver throws an exception.

void setClientUser(String)

Specifies a non-null string that sets the current user on the connection.
This method is used to perform reauthentication on a connection. For
the SQL Server driver, the current user is the login user name. The
driver throws an exception in the following circumstances:

• The driver is connected to a database server that does not support
reauthentication.

• The database server rejects the request to change the user on the
connection.

• A transaction is active on the connection.

void setCurrentUser(String)

Specifies a non-null string that sets the current user on the connection.
This method is used to perform reauthentication on a connection. In
addition, this method sets options that control how the driver handles
reauthentication. The options that are supported depend on the driver.
See the DB2 driver, Oracle driver, and SQL Server driver chapters for
information on which options are supported by each driver. For the
SQL Server driver, the current user is the login user name. The driver
throws an exception in the following circumstances:

• The driver is connected to a database server that does not support
reauthentication.

• The database server rejects the request to change the user on the
connection.

• A transaction is active on the connection.

void setCurrentUser(String, Properties)

83Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

ExtConnection Interface

DescriptionExtConnection Interface Methods

Specifies a non-null string that sets the current user on the connection
to the user specified by the javax.security.auth.Subject object. This
method is used to perform reauthentication on a connection. For the
SQL Server driver, the current user is the login user name. The driver
throws an exception in the following circumstances:

• The driver does not support reauthentication.

• The driver is connected to a database server that does not support
reauthentication.

• The database server rejects the request to change the user on the
connection.

• A transaction is active on the connection.

void
setCurrentUser(javax.security.auth.Subject)

Specifies a non-null string that sets the current user on the connection
to the user specified by the javax.security.auth.Subject object. This
method is used to perform reauthentication on a connection. In addition,
this method sets options that control how the driver handles
reauthentication. The options that are supported depend on the driver.
See the DB2 driver, Oracle driver, and SQL Server driver chapters for
information on which options are supported by each driver.

For the SQL Server driver, the current user is the login user name.

The driver throws an exception in the following circumstances:

• The driver does not support reauthentication.

• The driver is connected to a database server that does not support
reauthentication.

• The database server rejects the request to change the user on the
connection.

• A transaction is active on the connection.

void
setCurrentUser(javax.security.auth.Subject,
Properties)

Supported by the SQL Server driver to set the network timeout. The
network timeout is the maximum time (in milliseconds) that a connection,
or objects created by a connection, will wait for the database to reply
to an application request. If this limit is exceeded, the connection or
objects are closed and the driver returns an exception indicating that
a timeout occurred. A value of 0 means that no network timeout exists.

Note that if a query timeout occurs before a network timeout, the
execution of the statement is cancelled. Both the connection and the
statement can be used. If a network timeout occurs before a query
timeout or if the query timeout fails because of network problems, the
connection is closed and neither the connection or the statement can
be used.

void setNetworkTimeout(int)

Indicates whether the connection supports reauthentication. If true is
returned, you can perform reauthentication on the connection. If false
is returned, any attempt to perform reauthentication on the connection
throws an exception.

boolean supportsReauthentication()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.484

Chapter 2: JDBC Extensions

ExtDatabaseMetaData Interface
DescriptionExtDatabaseMetaData Interface Methods

Returns the maximum length of the client application name. A value of
0 indicates that the client application name is stored locally in the driver,
not in the database. There is no maximum length if the application
name is stored locally.

int getClientApplicationNameLength()

Returns the maximum length of the client user ID. A value of 0 indicates
that the client user ID is stored locally in the driver, not in the database.
There is no maximum length if the client user ID is stored locally.

int getClientUserLength()

Returns the maximum length of the hostname. A value of 0 indicates
that the hostname is stored locally in the driver, not in the database.
There is no maximum length if the hostname is stored locally.

int getClientHostnameLength()

Returns the maximum length of the accounting information. A value of
0 indicates that the accounting information is stored locally in the driver,
not in the database. There is no maximum length if the hostname is
stored locally.

int getClientAccountingInfoLength()

ExtLogControl Class
DescriptionClass Methods

If DataDirect Spy was enabled when the connection was created, you
can turn on or off DataDirect Spy logging at runtime using this method.
If true, logging is turned on. If false, logging is turned off. If DataDirect
Spy logging was not enabled when the connection was created, calling
this method has no effect.

void setEnableLogging(boolean enable|disable)

Indicates whether DataDirect Spy logging was enabled when the
connection was created and whether logging is turned on. If the returned
value is true, logging is turned on. If the returned value is false, logging
is turned off.

boolean getEnableLogging()

85Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

ExtDatabaseMetaData Interface

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.486

Chapter 2: JDBC Extensions

3
Supported SQLFunctionality and Extensions
for The Driver for Apache Hive

The DataDirect Connect® XE for JDBC
™ driver for Apache Hive™ supports an extended set of SQL-92 in addition

to the syntax for Apache HiveQL, which is a subset of SQL-92. Refer to the Hive Language Manual for information
about using HiveQL.

For details, see the following topics:

• Data Definition Language (DDL)

• Insert

• Selecting Data With the Driver

• SQL Expressions

• Restrictions

Data Definition Language (DDL)
The Driver for Apache Hive supports a broad set of DDL, including (but not limited to) the following:

• CREATE Database and DROP Database

• CREATE Table and DROP Table

• ALTER Table and ALTER Partition statements

• CREATE View and DROP View

87Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

• CREATE Function and DROP Function

Refer to the Hive Data Definition Language manual for information about using HiveQL.

Insert
Purpose
Adds new rows to a table.

Syntax
INSERT INTO TABLE table_name VALUES (expression [,expression]...)

where:

table_name

is the name of the table into which you want to insert rows.

expression

is a literal, a parameterized array, or null.

Notes
• The following conditions apply for the successful execution of an insert:

• Values for all columns must be specified in order.

• Column lists cannot be used.

• Casts and other functions cannot be used.

• String values must be enclosed in single quotation marks (').

• By default, the driver supports multirow inserts for parameterized arrays. For a multirow insert, the driver
attempts to execute a single insert for all the rows contained in a parameter array. If the size of the insert
statement exceeds the available buffer memory of the driver, the driver executes multiple statements. This
behavior provides substantial performance gains for batch inserts.

• The driver modifies the HQL statement to perform a multirow insert. Therefore, the default multirow insert
behavior may not be desirable in all scenarios. You can disable this behavior by setting the BatchMechanism
connection property to nativeBatch. When BatchMechanism=nativeBatch, Hive's native batch
mechanism is used to execute batch operations, and an insert statement is executed for each row contained
in a parameter array.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.488

Chapter 3: Supported SQL Functionality and Extensions for The Driver for Apache Hive

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Selecting Data With the Driver

Select List
The following sections discuss how the Select list can be used with the driver.

Between Clause
The BETWEEN clause is only supported in Apache Hive 0.9 or higher.

Column Name Qualification
A column can only be qualified with a single name, which must be a table alias. Furthermore, a table can be
qualified with a database (JDBC schema) name in the FROM clause, and in some cases, must also be aliased.
Aliasing may not be necessary if the database qualifier is not the current database.

The driver can work around these limitations using the Remove Column Qualifiers connection option.

• If set to 1, the driver removes three-part column qualifiers and replaces them with alias.column qualifiers.

• If set to 0, the driver does not do anything with the request.

Suppose you have the following ANSI SQL query:

SELECT schema.table1.col1,schema.table2.col2 FROM schema.table1,schema.table2

WHERE schema.table1.col3=schema.table2.col3

If the Remove Column Qualifiers connection option is enabled, the driver replaces the three-part column
qualifiers:

SELECT table1.col1, table2.col2 FROM schema.table1 table1 JOIN schema.table2 table2
WHERE table1.col3 = table2.col3

From Clause
LEFT, RIGHT, and FULL OUTER JOINs are supported, as are LEFT SEMI JOINs and CROSS JOINs using
the equal comparison operator, as shown in the following examples.

SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department)

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key =
b.key2)

SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key) WHERE
a.ds='2009-07-07' AND b.ds='2009-07-07'

However, the following syntax fails because of the use of non-equal comparison operators.

SELECT a.* FROM a JOIN b ON (a.id <> b.id)

HiveQL does not support join syntax in the form of a comma-separated list of tables. The driver, however,
overcomes this limitation by translating the SQL into HiveQL, as shown in the following examples.

89Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Selecting Data With the Driver

Driver for Apache Hive HiveQL TranslationANSI SQL-92 Query

SELECT * FROM t1 t1 JOIN t2 t2 WHERE a
= b

SELECT * FROM t1, t2 WHERE a = b

SELECT * FROM t1 y JOIN t2 x WHERE a =
b

SELECT * FROM t1 y, t2 x WHERE a = b

SELECT * FROM t2 t2 JOIN (SELECT * FROM
t1 t1) x

SELECT * FROM t2, (SELECT * FROM t1) x

Group By Clause
The GROUP BY clause is supported, with the following Entry SQL level restrictions:

• The COLLATE clause is not supported.

• SELECT DISTINCT is not supported for queries which also have a GROUP BY clause.

• The grouping column reference cannot be an alias. The following queries fail because fc is an alias for the
intcol column:

SELECT intcol AS fc, COUNT (*) FROM p_gtable GROUP BY fc

SELECT f(col) as fc, COUNT (*) FROM table_name GROUP BY fc

Having Clause
The Having Clause is supported, with the following Entry SQL level restriction: a GROUP BY clause is required.

Order By Clause
The Order By clause is supported, with the following Entry SQL level restrictions:

• An integer sort key is not allowed.

• The COLLATE clause is not supported.

For Update Clause
Not supported in this release. If present, the driver strips the For Update clause from the query.

Set Operators
Supported, with the following Entry SQL level restrictions:

• UNION is not supported.

Therefore, the following query fails:

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.490

Chapter 3: Supported SQL Functionality and Extensions for The Driver for Apache Hive

SELECT * FROM t1 UNION SELECT * FROM t2

• UNION ALL is supported.

Therefore, the following query works:

SELECT * FROM t1 UNION ALL SELECT * FROM t2

Note: For versions of Apache Hive 0.12 and earlier, UNION ALL is supported only in a subquery.

In addition, INTERSECT or EXCEPT are not supported.

Subqueries
A query is an operation that retrieves data from one or more tables or views. In this reference, a top-level query
is called a Select statement, and a query nested within a Select statement is called a subquery.

Subqueries are supported, with the following Entry SQL level restriction: subqueries can only exist in the FROM
clause, that is, in a derived table. In the following example, the second Select statement is a subquery:

SELECT * FROM (SELECT * FROM t1 UNION ALL SELECT * FROM t2) sq

Although Apache Hive currently does not support IN or EXISTS subqueries, you can efficiently implement the
semantics by rewriting queries to use LEFT SEMI JOIN.

SQL Expressions
An expression is a combination of one or more values, operators, and SQL functions that evaluate to a value.
You can use expressions in the WHERE and HAVING clauses of Select statements.

Expressions enable you to use mathematical operations as well as character string manipulation operators to
form complex queries.

Valid expression elements are:

• Constants on page 91

• Numeric Operators on page 92

• Character Operator on page 92

• Relational Operators on page 92

• Logical Operators on page 93

• Functions on page 93

Constants
Apache Hive uses binary literals for internal functions. Although the driver supports binary literals, no useful
information is returned.

Apache Hive servers prior to Apache Hive 0.8 do not support literal values expressed in scientific notation.

91Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Expressions

Numeric Operators
You can use a numeric operator in an expression to negate, add, subtract, multiply, and divide numeric values.
The result of this operation is also a numeric value. The + and - operators are also supported in date/time fields
to allow date arithmetic.

The following table lists the supported arithmetic operators.

Table 1: Numeric Operators

HiveQL OperatorEntry SQL Level Operator

Supported*

Supported+

Supported-

Supported/

N/A^ (XOR)

N/A% (Mod)

N/A& (bitwise AND)

Character Operator
The concatenation operator (||) is not supported; however, the CONCAT function is supported by HiveQL.

SELECT CONCAT('Name is', ’(ename FROM emp)’)

Relational Operators
Relational operators compare one expression to another.

The following table lists the supported relational operators.

Table 2: Relational Operators Supported with Apache Hive

Support in HiveQLEntry SQL Level Operator

Supported<>

Supported<

Supported<=

Supported=

Supported (Hive versions 0.9 and higher)<=>

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.492

Chapter 3: Supported SQL Functionality and Extensions for The Driver for Apache Hive

Support in HiveQLEntry SQL Level Operator

Supported>

Supported>=

SupportedIS [NOT] NULL

Supported[NOT] BETWEEN x AND y

Supported[NOT] IN

SupportedEXISTS

Supported, except that no collate clause is allowed[NOT] LIKE

SupportedRLIKE

SupportedREGEXP

Logical Operators
A logical operator combines the results of two component conditions to produce a single result or to invert the
result of a single condition. The following table lists the supported logical operators.

Table 3: Logical Operators

Support in HiveQLOperator

SupportedNOT !

SupportedAND &&

SupportedOR ||

Functions
The following tables show how SQL-92 functions are supported in HiveQL. Additional methods may be supported
with Escapes. See SQL Escape Sequences for JDBC on page 277 for more information.

Table 4: Set Functions Supported

Support in HiveQLSet Function

SupportedCount

SupportedAVG

SupportedMIN

93Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Expressions

Support in HiveQLSet Function

SupportedMAX

SupportedSUM

SupportedDISTINCT

SupportedALL

Table 5: Numeric Functions Supported

Support in HiveQLNumeric Function

Not supported. Use LENGTH(string) instead.CHAR_LENGTH CHARACTER_LENGTH

Not supportedPosition...In

Not supportedBIT_LENGTH(s)

Not supportedOCTET_LENGTH(str)

Not supportedEXTRACT...FROM

Table 6: String Functions Supported

Support in HiveQLString Function

SupportedSubstring

Not supportedConvert … using

SupportedTRIM

Not supported. Use LTRIM.Leading

Not supported. Use RTRIM.Trailing

Not supported (default behavior of TRIM)Both

Table 7: Date/Time Functions Supported

Support in HiveQLDate/Time Function

Not supportedCURRENT_DATE()

Not supportedCURRENT_TIME()

Not supportedCURRENT_TIMESTAMP

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.494

Chapter 3: Supported SQL Functionality and Extensions for The Driver for Apache Hive

Table 8: System Functions Supported

Support in HiveQLSystem Function

SupportedCASE ... END

SupportedCOALESCE

Not supportedNULLIF

SupportedCAST

Restrictions
Apache Hive has the following SQL restrictions:

• Column values and parameters are always nullable.

• No support for stored procedures

• No ROWID support

• No support for materialized views

• No support for synonyms

• Primary and foreign keys are not supported.

• Support for indexes is incomplete.

• Join support is limited to equality joins.

• A single quote within a string literal must be escaped using a \ instead of using a single quote. Because
string literals can be expressed with either single or double quotation marks, Apache's would be written as
'Apache\'s' or "Apache\'s".

95Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Restrictions

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.496

Chapter 3: Supported SQL Functionality and Extensions for The Driver for Apache Hive

4
Supported SQL Statements and Extensions
for the Salesforce Driver

The Salesforce driver provides support for standard SQL (primarily SQL-92). In addition, the product supports
a set of SQL extensions. For example, the product supports extensions that allow you to change the default
schema or set the maximum number of Web service calls the driver can make when executing a SQL
statement.This chapter describes both the standard SQL statements and the SQL extensions.

For details, see the following topics:

• Alter Cache (EXT)

• Alter Index

• Alter Sequence

• Alter Session (EXT)

• Alter Table

• Checkpoint

• Create Cache (EXT)

• Create Index

• Create Sequence

• Create Table

• Create View

• Delete

97Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

• Drop Cache (EXT)

• Drop Index

• Drop Sequence

• Drop Table

• Drop View

• Explain Plan

• Insert

• Refresh Cache (EXT)

• Refresh Schema (EXT)

• Select

• Set Checkpoint Defrag

• Set Logsize

• Update

• SQL Expressions

• Operators

• Functions

• Conditions

• Subqueries

Alter Cache (EXT)
Purpose
Changes the definition of a cache on a remote table or view. An error is returned if the remote table or view
specified does not exist.

Syntax
ALTER CACHE ON {remote_table | view}
[REFERENCING (remote_table_ref[,remote_table_ref]...)]
[REFRESH_INTERVAL {0 | -1 | interval_value [{M, H, D}]}]
[INITIAL_CHECK [ONFIRSTCONNECT | FIRSTUSE | DEFAULT}]
[PERSIST {TEMPORARY | MEMORY | DISK | DEFAULT}]
[ENABLED {YES | TRUE | NO | FALSE}]
[CALL_LIMIT {0 | -1 | max_calls}]
[FILTER (expression)]

where:

remote_table

is the name of the remote table cache definition to be modified. The remote table name can be a
two-part name: schemaname.tablename. When specifying a two-part name, the specified remote

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.498

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

table must be defined in the specified schema, and you must have the privilege to alter objects in
the specified schema. When altering a relational cache, remote_table must specify the primary table
of the relational cache.

view

is the name of the view cache definition to be modified. The view name can be a two-part name:
schemaname.viewname. When specifying a two-part name, the specified view must be defined in
the specified schema, and you must have the privilege to alter objects in the specified schema.
Caches on views are not currently supported in the product.

REFERENCING

is an optional clause that specifies the name of the remote table(s) for which a relationship cache is
to be created. See Relational Caches on page 100 and Referencing Clause on page 110 for a complete
explanation.

REFRESH_INTERVAL

is an optional clause that specifies the length of time the data in the cached table can be used before
being refreshed. See Refresh Interval Clause on page 110 for a complete explanation.

INITIAL_CHECK

is an optional clause that specifies when the driver initially checks whether the data in the cache
needs refreshed. See Initial Check Clause on page 111 for a complete explanation.

PERSIST

is an optional clause that specifies the life span of the data in the cached table or view. See Persist
Clause on page 111 for a complete explanation.

ENABLED

is an optional clause that specifies whether the cache is enabled or disabled for use with SQL
statements. See Enabled Clause on page 112 for a complete explanation.

CALL_LIMIT

is an optional clause that specifies the maximum number of Web service calls that can be used to
populate or refresh the cache. See Call Limit Clause on page 113 for a complete explanation.

FILTER

is an optional clause that specifies a filter for the primary table to limit the number of rows that are
cached in the primary table. See Filter Clause on page 114 for a complete explanation.

Notes
• At least one of the optional clauses must be used. If two or more are specified, they must be specified in

the order shown in the grammar description.

99Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Alter Cache (EXT)

Relational Caches
If the Referencing clause is specified, the Alter Cache statement drops the existing cache and any referenced
caches and creates a new set of related caches, one for each of the tables specified in the statement. The
cache attributes for the existing cache are the default cache attributes for the new relational cache. Any attributes
specified in the Alter Cache statement override the default attributes. If the Referencing clause is not specified,
the existing cache references, if any, are used.

If the cache being altered is a relational cache, the attributes specified in the Alter Cache statement apply to
all of the caches that comprise the relational cache.

Alter Index
Purpose
Changes the name of an existing index.

Syntax
ALTER INDEX index_name RENAME TO new_name

where:

index_name

specifies an existing index name.

new_name

specifies the new index name.

Notes
• Index names must not conflict with other user-defined or system-defined names.

• Indexes on remote tables cannot be created, altered or dropped. Indexes can only be defined on local
tables.

Alter Sequence
Purpose
Resets the next value of an existing sequence.

Syntax
ALTER SEQUENCE sequence_name RESTART WITH value

where:

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4100

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

sequence_name

specifies an existing sequence.

value

specifies the next value to be returned through the Next Value For clause (see Next Value For Clause
on page 116).

Alter Session (EXT)
Purpose
Changes various attributes of a database session or a remote session. A database session maintains the state
of the overall connection. A remote session maintains the state that pertains to a particular remote data source
connection.

Syntax
ALTER SESSION SET attribute_name=value

where:

attribute_name

specifies the name of the attribute to be changed. Attributes apply to either database sessions or
remote sessions.

value

specifies the value for that attribute.

The following table lists the database and remote session attributes, and provides descriptions of each.

Table 9: Alter Session Attributes

DescriptionSession TypeAttribute Name

Sets the current schema for the database session. The current schema
is the schema used when an identifier in a SQL statement is unqualified.
The string value must be the name of a schema visible in the database
session. For example:

ALTER SESSION SET CURRENT_SCHEMA=sforce

DatabaseCurrent_Schema

101Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Alter Session (EXT)

DescriptionSession TypeAttribute Name

Sets the maximum number of Web service calls the driver can make
in executing a statement. Setting the Stmt_Call_Limit attribute has the
same effect as setting the StmtCallLimit connection option. It sets the
default Web service call limit used by any statement on the connection.
Executing this command on a statement overrides the previously set
StmtCallLimit for the connection. The value specified must be a positive
integer or 0. The value 0 means that no call limit exists. For example:

ALTER SESSION SET STMT_CALL_LIMIT=10

DatabaseStmt_Call_Limit

Resets the Web service call count of a remote session to the value
specified. The value must be 0 or a positive integer. WS_Call_Count
represents the total number of Web service calls made to the remote
data source instance for the current session. For example:

ALTER SESSION SET sforce.WS_CALL_COUNT=0

The current value of WS_Call_Count can be obtained by referring to
the System_Remote_Sessions system table (see
SYSTEM_REMOTE_SESSIONS Catalog Table for details). For
example:

SELECT * from
information_schema.system_remote_sessions WHERE
session_id = cursessionid()

RemoteWs_Call_Count

Alter Table
SeeFor information on...

Altering a Remote Table on page 102Altering a remote table

Altering a Local Table on page 105Altering a local table

Altering a Remote Table

Purpose
Adds a column, removes a column, or redefines a column in a table. The table being altered can be either a
remote or local table. A remote table is a Salesforce object and is exposed in the SFORCE schema. A local
table is maintained by the driver and is local to the machine on which the driver is running. A local table is
exposed in the PUBLIC schema.

Syntax
ALTER TABLE table_name
[add_clause]
[drop_clause]

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4102

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

where:

table_name

specifies an existing remote table.

add_clause

specifies a column or a foreign key constraint to be added to the table. See Add Clause: Columns
on page 103 and Add Clause: Constraints on page 104 for a complete explanation.

drop_clause

specifies a column to be dropped from the table. See Drop Clause: Columns on page 104 for a
complete explanation.

Notes
• You cannot drop a constraint from a remote table.

Add Clause: Columns

Purpose
Adds a column to an existing table. It is optional.

Syntax
ADD [COLUMN] column_name Datatype ...
[DEFAULT default_value] [[NOT]NULL] [EXT_ID] [PRIMARY KEY]
[START WITH starting_value]

default_value

is the default value to be assigned to the column. See Column Definition for Remote Tables on page
117 for details.

starting_value

is the starting value for the Identity column. The default start value is 0.

Notes
• If NOT NULL is specified and the table is not empty, a default value must be specified. In all other respects,

this command is the equivalent of a column definition in a Create Table statement.

• You cannot specify ANYTYPE, BINARY, COMBOBOX, or TIME data types in the column definition of Alter
Table statements.

• If a SQL view includes SELECT * FROM for the table to which the column was added in the view’s Select
statement, the new column is added to the view.

Example A
Assuming the current schema is SFORCE, this example adds the status column with a default value of
ACTIVE to the test table.

ALTER TABLE test ADD COLUMN status TEXT(30) DEFAULT 'ACTIVE'

103Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Alter Table

Example B
Assuming the current schema is SFORCE, this example adds a deptId column that can be used as a foreign
key column.

ALTER TABLE test ADD COLUMN deptId TEXT(18)

Add Clause: Constraints

Purpose
Adds a constraint to an existing table. It is optional.

Syntax
ADD [CONSTRAINT constraint_name] ...

Notes
• The only type of constraint you can add is a foreign key constraint.

• When adding a foreign key constraint, the table that contains the foreign key must be empty.

Example
Assuming the current schema is SFORCE, a foreign key constraint is added to the deptId column of the test
table, referencing the rowId of the dept table. For the operation to succeed, the dept table must be empty.

ALTER TABLE test ADD FOREIGN KEY (deptId) REFERENCES dept(rowId)

Drop Clause: Columns

Purpose
Drops a column from an existing table. It is optional.

Syntax
DROP {[COLUMN] column_name}

where:

column_name

specifies an existing column in an existing table.

Notes
• The column being dropped cannot have a constraint defined on it.

• Drop fails if a SQL view includes the column.

Example
This example drops the status column. For the operation to succeed, the status column cannot have a
constraint defined on it and cannot be used in a SQL view.

ALTER TABLE test DROP COLUMN status

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4104

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Altering a Local Table

Purpose
Adds a column, removes a column, or redefines a column in a table. The table being altered can be either a
remote or local table. A remote table is a Salesforce object and is exposed in the SFORCE schema. A local
table is maintained by the driver and is local to the machine on which the driver is running. A local table is
exposed in the PUBLIC schema.

Syntax
ALTER TABLE table_name
[add_clause]
[drop_clause]
[rename_clause]

where:

table_name

specifies an existing local table.

add_clause

specifies a column or constraint to be added to the table. See Add Clause: Columns on page 105
and Add Clause: Constraints on page 106for a complete explanation.

drop_clause

specifies a column or constraint to be dropped from the table. See Drop Clause: Columns on page
106 and Drop Clause: Constraints on page 107 for a complete explanation.

rename_clause

specifies a new name for the table. See Rename Clause on page 107 for a complete explanation.

Add Clause: Columns

Purpose
Adds a column to an existing table. It is optional. The column is added to the end of the column list.

Syntax
ADD [COLUMN] column_name Datatype ... [BEFORE existing_column]

Notes
• If NOT NULL is specified and the table is not empty, a default value must be specified. In all other respects,

this command is the equivalent of a column definition in a Create Table statement.

• You cannot specify ANYTYPE, BINARY, COMBOBOX, or TIME data types in the column definition of Alter
Table statements.

• Using the Before existing_column clause, you can specify the name of an existing column so that the new
column is inserted in a position just before the existing column.

105Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Alter Table

• If a SQL view includes SELECT * FROM for the table to which the column was added in the view’s Select
statement, the new column is added to the view.

Example A
Assuming the current schema is PUBLIC, this example adds the status column with a default value of ACTIVE
to the test table.

ALTER TABLE test ADD COLUMN status VARCHAR(30) DEFAULT 'ACTIVE'

Example B
Assuming the current schema is PUBLIC, this example adds a deptId column that can be used as a foreign
key column.

ALTER TABLE test ADD COLUMN deptId INT

Add Clause: Constraints

Purpose
Adds a constraint to an existing table. It is optional.

This command adds a constraint using the same syntax as the Create Table command (see Constraint Definition
for Local Tables on page 123).

Syntax
ADD [CONSTRAINT constraint_name] ...

Notes
• You cannot add a Unique constraint if one is already assigned to the same column list. A Unique constraint

works only if the values of the columns in the constraint columns list for the existing rows are unique or
include a Null value.

• Adding a foreign key constraint to the table fails if, for each existing row in the referring table, a matching
row (with equal values for the column list) is not found in the referenced table.

Example
Assuming the current schema is PUBLIC, this example adds a foreign key constraint to the deptId column
of the test table that references the rowId of the dept table.

ALTER TABLE test ADD CONSTRAINT test_fk FOREIGN KEY (deptId) REFERENCES dept(id)

Drop Clause: Columns

Purpose
Drops a column from an existing table. It is optional.

Syntax
DROP {[COLUMN] column_name}

where:

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4106

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

column_name

specifies an existing column in an existing table.

Notes
• Drop fails if a SQL view includes the column.

Example
This example drops the status column. For the operation to succeed, the status column cannot have a
constraint defined on it and cannot be used in a SQL view.

ALTER TABLE test DROP COLUMN status

Drop Clause: Constraints

Purpose
Drops a constraint from an existing table. It is optional.

Syntax
DROP {[CONSTRAINT] constraint_name}

where:

constraint_name

specifies an existing constraint.

Notes
• The specified constraint cannot be a primary key constraint or unique constraint.

Example
This example drops the test_fk constraint.

ALTER TABLE test DROP CONSTRAINT test_fk

Rename Clause

Purpose
Renames an existing table. It is optional.

Syntax
RENAME TO new_name

where:

new_name

specifies the new name for the table.

107Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Alter Table

Example
This example renames the table to test2.

ALTER TABLE test RENAME TO test2

Checkpoint
Purpose
Ensures that all database changes in memory are committed to disk. Executing the Checkpoint statement
closes the database files, rewrites the script file, deletes the log file, and reopens the database.

Syntax
CHECKPOINT [DEFRAG]

where:

DEFRAG

if specified, this statement evaluates abandoned space in the database data file (.data) and shrinks
the data file to its minimum size.

Create Cache (EXT)
Purpose
Creates a cache that holds the data of a remote table. The data is not loaded into the cache when the Create
Cache statement is executed; the data is loaded the first time that the remote table is executed or when a
Refresh Cache statement on the remote table is executed. An error is returned if the remote table specified
does not exist.

Syntax
CREATE CACHE ON {remote_table}
[REFERENCING (remote_table_ref[,remote_table_ref]...)]
[REFRESH_INTERVAL {0 | -1 | interval_value [{M, H, D}]}]
[INITIAL_CHECK [{ONFIRSTCONNECT | FIRSTUSE | DEFAULT}]
[PERSIST {TEMPORARY | MEMORY | DISK | DEFAULT}]
[ENABLED {YES | TRUE | NO | FALSE}]
[CALL_LIMIT {0 | -1 | max_calls}]
[FILTER (expression)]

where:

remote_table

is the name of the remote table from which data is to be cached on the client. The name of the cached
table is the same as the name of the remote table. When the table name is specified in a query, the
cached table is accessed, not the remote table. The remote table name can be a two-part name:
schemaname.tablename. When specifying a two-part name, the specified remote table must be

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4108

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

defined in the specified schema, and you must have the privilege to create objects in the specified
schema.

REFERENCING

is an optional clause that specifies the name of the remote table(s) for which a relationship cache is
to be created. See Relational Caches on page 109 and Referencing Clause on page 110 for a complete
explanation.

REFRESH_INTERVAL

is an optional clause that specifies the length of time the data in the cached table can be used before
being refreshed. See Refresh Interval Clause on page 110 for a complete explanation.

INITIAL_CHECK

is an optional clause that specifies when the driver initially checks whether the data in the cache
needs refreshed. See Initial Check Clause on page 111 for a complete explanation.

PERSIST

is an optional clause that specifies the life span of the data in the cached table or view. See Persist
Clause on page 111 for a complete explanation.

ENABLED

is an optional clause that specifies whether the cache is enabled or disabled for use with SQL
statements. See Enabled Clause on page 112 for a complete explanation.

CALL_LIMIT

is an optional clause that specifies the maximum number of Web service calls that can be used to
populate or refresh the cache. See Call Limit Clause on page 113 for a complete explanation.

FILTER

is an optional clause that specifies a filter for the primary table to limit the number of rows that are
cached in the primary table. See Filter Clause on page 114 for a complete explanation.

Notes
• Caches on views are not supported.

• If two or more optional clauses are specified, they must be specified in the order shown in the grammar
description.

Relational Caches
If the Referencing clause is specified, the Create Cache statement creates a set of related caches, one for
each of the tables specified in the statement. This set of caches is referred to as a related or relational cache.
The set of caches in a relational cache is treated as a single entity. They are refreshed, altered, and dropped
as a unit. Any attributes specified in the Create Cache statement apply to the cache created for the primary
table and to the caches created for all of the referenced tables specified.

A database session can have both standalone and relational caches defined, but only one cache can be defined
on a table. If a table is referenced in a relational cache definition, a standalone cache cannot be created on
that table.

109Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Cache (EXT)

Referencing Clause

Purpose
Specifies the name of the remote table(s) for which a relationship cache is to be created; it is optional. The
specified remote table must be related to either the primary table being cached or one of the other specified
related tables. The remote table name cannot include a schema name. The referenced tables must exist in
the same schema as the primary table.

Syntax
REFERENCING (remote_table_ref[,remote_table_ref]...)]

where:

remote_table_ref

represents remote_table[.foreign_key_name]

remote_table

specifies one or more tables related to the primary table that are to be cached in conjunction with
the primary table.

foreign_key_name

specifies the name of the foreign key relationship between the remote table and the primary table
(or, optionally, another related table). If a foreign key name is not specified, the driver attempts to
find a relationship between the remote table and one of the other tables specified in the relational
cache. The driver first looks for a relationship to the primary table. If a relationship to the primary
table does not exist, the driver then looks for a relationship to other referenced tables.

See also
Creating a Cache in the DataDirect Connect Series for JDBC User’s Guide

Refresh Interval Clause

Purpose
Specifies the length of time the data in the cached table can be used before being refreshed; it is optional. The
driver maintains a timestamp of when the data in a table was last refreshed. When a cached table is used in
a query, the driver checks if the current time is greater than the last refresh time plus the value of
Refresh_Interval. If it is, the driver refreshes the data in the cached table before processing the query.

Syntax
[REFRESH_INTERVAL {0 | -1 | interval_value [{M, H, D}]}]

where:

0

specifies that the cache is refreshed manually. You can use the Refresh Cache statement to refresh
the cache manually.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4110

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

-1

resets the refresh interval to the default value of 12 hours.

interval_value

is a positive integer that specifies the amount of time between refreshes. The default unit of time is
hours (H). You can also specify M for minutes or D for days. For example, 60M would set the time
between refreshes to 60 minutes. The default refresh interval is 12 hours.

Initial Check Clause

Purpose
Specifies when the driver performs its initial check of the data in the cache to determine whether it needs to
be refreshed; it is optional.

Syntax
[INITIAL_CHECK [ONFIRSTCONNECT | FIRSTUSE | DEFAULT}]

where:

ONFIRSTCONNECT

specifies that the initial check is performed the first time a connection for a user is established.
Subsequently, it is performed each time the table or view is used. A driver session begins on the
first connection for a user and the session is active as long as at least one connection is open for
the user.

FIRSTUSE

specifies that the initial check is performed the first time the table or view is used in a query.
Subsequently, it is performed each time the table or view is used.

DEFAULT

resets the value back to its default, which is FIRSTUSE.

Persist Clause

Purpose
Specifies the life span of the data in the cached table or view; it is optional.

Syntax
[PERSIST {TEMPORARY | MEMORY | DISK | DEFAULT}]

where:

111Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Cache (EXT)

TEMPORARY

specifies that the data exists for the life of the driver session. When the driver session ends, the data
is discarded. A driver session begins on the first connection for a user and the session is active if at
least one connection is open for the user.

MEMORY

specifies that the data exists beyond the life of the connection. While the connection is active, the
cached data is stored in memory. When the connection is closed, the cached data is persisted to
disk. If the connection ends abnormally, changes to the cached data may not be persisted to disk.
This is the default.

DISK

specifies that the data exists beyond the life of the connection. A portion of the cached data is stored
in memory while the connection is active. If the size of the cached data exceeds the cache memory
threshold, the remaining data is stored on disk. When the connection is closed, the portion of the
cached data that is in memory is persisted to disk. If the connection ends abnormally, changes to
the cached data held in memory may not be persisted to disk.

DEFAULT

resets the PERSIST value back to its default, which is MEMORY.

Notes
• If you specify a value of MEMORY or DISK for the Persist clause, the remote data remains on the client past

the lifetime of the application.

• You can design your application to force all cached data held in memory to be persisted to disk at any time
by using the Checkpoint statement.

Enabled Clause

Purpose
Specifies whether the cache is enabled or disabled for use with SQL statements; it is optional.

Syntax
[ENABLED {YES | TRUE | NO | FALSE}]

where:

YES | TRUE

specifies that the cache is enabled. When a cache is enabled, the driver accesses the cached data
for the remote table or view when a query is executed.

The driver does not check whether the cache needs to be refreshed when the cache is enabled. The
check occurs the next time that the cache is accessed.

NO | FALSE

specifies that the cache is disabled, which means that the driver accesses the data in the remote
table or view rather than the cache when a query is executed. The driver does not update the cache

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4112

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

when inserts, updates, and deletes are performed on a remote table or view. To use the cache, you
must enable it.

All data in an existing cache is persisted on the client even when the cache is disabled, except for
the case where PERSIST is set to TEMPORARY.

Default
The default behavior is TRUE.

Call Limit Clause

Purpose
Specifies the maximum number of Web service calls that can be used to populate or refresh the cache; it is
optional.

Syntax
[CALL_LIMIT {0 | -1 | max_calls}]

where:

0

specifies no call limit.

-1

resets the call limit back to its default, which is 0 (no call limit).

max_calls

is a positive integer that specifies the maximum number of Web service calls.

Default
The default behavior is 0.

Notes
• The call limit for a cache is independent of the Stmt_Call_Limit set on a database session. See Alter Session

(EXT) on page 101 for details.

If the call limit of a cache is exceeded during the population or refresh of the cache, the cache is marked
as partially initialized. At the next refresh opportunity, the driver attempts to complete the population or
refresh of the cache. If the call limit (or other error) occurs during this second attempt, the cache becomes
invalid and is disabled. All data in the cache is discarded after the second attempt to populate or refresh
the cache fails. Before re-enabling the cache, consider altering the cache definition to allow more Web
service calls or specify a more restrictive filter, or both.

113Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Cache (EXT)

Filter Clause

Purpose
Specifies a filter for the primary table to limit the number of rows that are cached in the primary table; it is
optional. This clause is not supported for views.

Syntax
[FILTER (expression)]

where:

expression

is any valid Where clause. See Where Clause on page 140 for details. Do not include the Where
keyword in the clause. The filter for an existing cache can be removed by specifying an empty string
for the filter expression, for example, FILTER().

Default
The default behavior is that cached data is not filtered.

Example A
Referencing clause allows multiple related tables to be cached as a single entity. This example creates a cache
on the remote table account. The cache is populated with all accounts that have had activity in 2010. Additionally,
caches are created for the following remote tables: opportunity, contact, and opportunitylineitem.
These caches are populated with the opportunities and contacts that are associated with the accounts stored
in the accounts cache and the opportunity line items associated with the opportunities stored in the opportunity
cache.

CREATE CACHE ON account
REFERENCING (opportunity, contact, opportunitylineitem)
FILTER (lastactivitydate >= {d'2010-01-01'})

Example B
This example caches all rows of the account table with a refresh interval of 12 hours, checks whether data of
the cached table needs to be refreshed on the first use, persists the data beyond the life of the connection,
and stores the data in memory while the connection is active.

CREATE CACHE ON account

Example C
This example caches all active accounts in the account table with a refresh interval of 1 day, checks whether
data of the cached table needs to be refreshed when the connection is established, and discards the data when
the connection is closed.

CREATE CACHE ON account REFRESH_INTERVAL 1d
INITIAL_CHECK ONFIRSTCONNECT
PERSIST TEMPORARY
FILTER(account.active = 'Yes')

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4114

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Create Index
Purpose
Creates an index on one or more columns in a local table.

Syntax
CREATE [UNIQUE] INDEX index_name ON table_name (column_name [, ...])

where:

UNIQUE

means that key columns cannot have duplicate values.

index_name

specifies the name of the index to be created.

table_name

specifies an existing local table.

column_name

specifies an existing column.

Notes
• The driver cannot create an index in a remote table; the driver returns an error indicating that the operation

cannot be performed on a remote table.

• Creating a unique constraint is the preferred way to specify that the values of a column must be unique.

Create Sequence
Purpose
Creates an auto-incrementing sequence for a local table.

Syntax
CREATE SEQUENCE sequence_name [AS {INTEGER | BIGINT}] [START WITH start_value]
[INCREMENT BY increment_value]

where:

sequence_name

specifies the name of the sequence. By default, the sequence type is INTEGER.

115Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Index

start_value

specifies the starting value of the sequence. The default start value is 0.

increment_value

specifies the value of the increment; the value must be a positive integer. The default increment is
1.

Next Value For Clause

Purpose
Specifies the next value for a sequence that is used in a Select, Insert, or Update statement.

Syntax
NEXT VALUE FOR sequence_name

where:

sequence_name

specifies the name of the sequence from which to retrieve the value.

Example
This example retrieves the next value or set of values in Sequence1:

SELECT NEXT VALUE FOR Sequence1 FROM Account

Create Table
See...For information on...

Creating a Remote Table on page 116Creating a remote table

Creating a Local Table on page 121Creating a local table

Creating a Remote Table

Purpose
Creates a new table. You can create either a remote or local table. A remote table is a Salesforce object and
is exposed in the SFORCE schema. Creating a table in the SFORCE schema creates a remote table. A local
table is maintained by the driver and is local to the machine on which the driver is running. A local table is
exposed in the PUBLIC schema. Creating a table in the PUBLIC schema creates a local table.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4116

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Syntax
CREATE TABLE table_name (column_definition [, ...] [, constraint_definition...])

where:

table_name

specifies the name of the new remote table. The table name can be qualified by a schema name
using the format schema.table. If the schema is not specified, the table is created in the current
schema. See Alter Session (EXT) on page 101 for information about changing the current schema.

column_definition

specifies the definition of a column in the new table. See Column Definition for Remote Tables on
page 117 for a complete explanation.

constraint_definition

specifies constraints on the columns of the new table. See Constraint Definition for Remote Tables
on page 119 for a complete explanation.

Notes
• Creating tables in Salesforce is not a quick operation. It can take several minutes for Salesforce to create

the table and its relationships.

Column Definition for Remote Tables

Purpose
Defines a column for remote tables.

Syntax
column_name Datatype [(precision[,scale])...]
[DEFAULT default_value][[NOT]NULL][EXT_ID][PRIMARY KEY]
[START WITH starting_value]

where:

column_name

is the name to be assigned to the column.

Datatype

is the data type of the column to be created. See Data Types in the DataDirect Connect Series for
JDBC User’s Guide for a list of supported Salesforce data types. You cannot specify ANYTYPE,
BINARY, COMBOBOX, ENCRYPTEDTEXT, or TIME data types in the column definition of
Create Table statements.

precision

is the total number of digits for NUMBER, CURRENCY, and PERCENT columns, and the length of
HTML, LONGTEXTAREA, and TEXT columns.

117Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Table

scale

is the number of digits to the right of the decimal point for NUMBER, CURRENCY, and PERCENT
columns.

default_value

is the default value to be assigned to the column. The following default values are allowed in column
definitions for remote tables:

• For character columns, a single-quoted string or NULL.

• For datetime columns, a single-quoted Date, Time, or Timestamp value or NULL. You can also
use the following datetime SQL functions: CURRENT_DATE, CURRENT_ TIMESTAMP, TODAY,
or NOW.

• For boolean columns, the literals FALSE, TRUE, NULL.

• For numeric columns, any valid number or NULL.

starting_value

is the starting value for the Identity column. The default start value is 0.

[NOT]NULL

is used to specify whether NULL values are allowed or not allowed in a column. If NOT NULL is
specified, all rows in the table must have a column value. If NULL is specified or if neither NULL or
NOT NULL is specified, NULL values are allowed in the column.

EXT_ID

is used to specify that the column is an external ID column.

PRIMARY KEY

can only be specified when the data type of the column is ID. ID columns are always the primary
key column for Salesforce.

START WITH

specifies the sequence of numbers generated for the Identity column. It can only be used when the
data type of the column definition is AUTONUMBER.

Example A
Assuming the current schema is SFORCE, the remote table Test is created in the SFORCE schema. The id
column has a starting value of 1000.

CREATE TABLE Test (id AUTONUMBER START WITH 1000, Name TEXT(30))

Example B
The table name is qualified with a schema name that is not the current schema, creating the Test table in the
SFORCE schema. The table is created with the following columns: id, Name, and Status. The Status column
contains a default value of ACTIVE.

CREATE TABLE SFORCE.Test (id NUMBER(9, 0), Name TEXT(30), Status TEXT(10) DEFAULT
'ACTIVE')

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4118

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Example C
Assuming the current schema is SFORCE, the remote table dept is created with the name and deptId
columns. The deptId column can be used as an external ID column.

CREATE TABLE dept (name TEXT(30), deptId NUMBER(9, 0) EXT_ID)

Constraint Definition for Remote Tables

Purpose
Defines a constraint for a remote table.

Syntax
[CONSTRAINT [constraint_name] {foreign_key_constraint}]

where:

constraint_name

is ignored. The driver uses the Salesforce relationship naming convention to generate the constraint
name.

foreign_key_constraint

defines a link between related tables. See Foreign Key Clause on page 120 for the syntax.

A column defined as a foreign key in one table references a primary key in the related table. Only
values that are valid in the primary key are valid in the foreign key. The following example is valid
because the foreign key values of the dept id column in the EMP table match those of the id column
in the referenced table DEPT:

Main TableReferenced Table

EMPDEPT

(Foreign Key)

dept idnameidnameid

1Mark1Dev1

3Jim1Finance2

2Mike1Sales3

The following example, however, is not valid. The value 4 in the dept id column does not match any
value in the referenced id column of the DEPT table.

Main TableReferenced Table

EMPDEPT

(Foreign Key)

119Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Table

Main TableReferenced Table

dept idnameidnameid

1Mark1Dev1

3Jim1Finance2

4Mike1Sales3

Foreign Key Clause

Purpose
Specifies a foreign key for a constraint.

Syntax
FOREIGN KEY (fcolumn_name)

REFERENCES ref_table (pcolumn_name)

where:

fcolumn_name

specifies the foreign key column to which the constraint is applied. The data type of this column must
be the same as the data type of the column it references.

ref_table

specifies the table to which the foreign key refers.

pcolumn_name

specifies the primary key column in the referenced table. For Salesforce, the primary key column is
always the rowId column.

Example
Assuming the current schema is SFORCE, the remote table emp is created with the name, empId, and deptId
columns. The table contains a foreign key constraint on the deptId column, referencing the rowId in the
dept table created in Example C. For the operation to succeed, the data type of the deptId column must be
the same as that of the rowId column.

CREATE TABLE emp (name TEXT(30), empId NUMBER(9, 0) EXT_ID, deptId TEXT(18),
FOREIGN KEY(deptId) REFERENCES dept(rowId))

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4120

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Creating a Local Table

Purpose
Creates a new table. You can create either a remote or local table. A remote table is a Salesforce object and
is exposed in the SFORCE schema. Creating a table in the SFORCE schema creates a remote table. A local
table is maintained by the driver and is local to the machine on which the driver is running. A local table is
exposed in the PUBLIC schema. Creating a table in the PUBLIC schema creates a local table.

Syntax
CREATE [{MEMORY | DISK | [GLOBAL] {TEMPORARY | TEMP}]
TABLE table_name (column_definition [, ...]
[, constraint_definition...])
[ON COMMIT {DELETE | PRESERVE} ROWS]

where:

MEMORY

creates the new table in memory. The data for a memory table is held entirely in memory for the
duration of the database session. When the database is closed, the data for the memory table is
persisted to disk.

DISK

creates the new table in on disk. A disk table caches a portion of its data in memory and the remaining
data on disk.

TEMPORARY | TEMP

creates the new table as a global temporary table. The GLOBAL qualifier is optional. The definition
of a global temporary table is visible to all connections. The data written to a global temporary table
is visible only to the connection used to write the data.

table_name

specifies the name of the new table.

column_definition

specifies the definition of a column in the new table. See Column Definition for Local Tables on page
122 for a complete explanation.

constraint_definition

specifies constraints on the columns of the new table. See Constraint Definition for Local Tables on
page 123 for a complete explanation.

ON COMMIT PRESERVE ROWS

preserves row values in a temporary table while the connection is open; this is the default action.

ON COMMIT DELETE ROWS

empties row values on each commit or rollback.

121Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Table

Notes
• If MEMORY, DISK, or TEMPORARY|TEMP is not specified, the new table is created in memory.

Column Definition for Local Tables

Purpose
Defines a column for local tables.

Syntax
column_name Datatype [(precision[,scale])]
[{DEFAULT default_value | GENERATED BY DEFAULT AS IDENTITY
(START WITH n[, INCREMENT BY m])}] | [[NOT] NULL]
[IDENTITY] [PRIMARY KEY]

where:

column_name

is the name to be assigned to the column.

Datatype

is the data type of the column to be created. See Data Types in the DataDirect Connect Series for
JDBC User’s Guide for a list of supported Salesforce data types. You cannot specify ANYTYPE,
BINARY, COMBOBOX, or TIME data types in the column definition of Create Table statements.

precision

is the number characters for CHAR and VARCHAR columns, the number of bytes for BINARY and
VARBINARY columns, and the total number of digits for DECIMAL columns.

scale

is the number of digits to the right of the decimal point for DECIMAL columns and the number of
fractional second digits for DATETIME columns.

default_value

is the default value to be assigned to the column. The following default values are allowed in column
definitions for local tables:

• For character columns, a single-quoted string or NULL. The only SQL function that can be used
is CURRENT_USER.

• For datetime columns, a single-quoted Date, Time, or Timestamp value or NULL. You can also
use the following datetime SQL functions: CURRENT_DATE, CURRENT_TIME, CURRENT_
TIMESTAMP, TODAY, or NOW.

• For boolean columns, the literals FALSE, TRUE, NULL.

• For numeric columns, any valid number or NULL.

• For binary columns, any valid hexadecimal string or NULL.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4122

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

IDENTITY | GENERATED BY DEFAULT AS IDENTITY

define an auto-increment column. You can only specify these clauses on INTEGER and BIGINT
columns. Identity columns are considered primary key columns, so a table can have only one Identity
column.

The GENERATED BY DEFAULT AS IDENTITY clause is the standard SQL syntax for specifying
an Identity column.

The IDENTITY operator is equivalent to GENERATED BY DEFAULT AS IDENTITY without the
optional START WITH clause.

START WITH n[, INCREMENT BY m])

specifies the sequence of numbers generated for the Identity column. n and m are the starting and
incrementing values, respectively, for an Identity column. The default start value is 0 and the default
increment value is 1.

Example A
Assuming the current schema is PUBLIC, a local table is created. id is an identity column with a starting value
of 0 and an increment value of 1 because no Start With and Increment By clauses are specified.

CREATE TABLE Test (id INTEGER GENERATED BY DEFAULT AS IDENTITY, name VARCHAR(30))

This example is equivalent to the previous example.

CREATE TABLE Test (id INTEGER IDENTITY, name VARCHAR(30))

Example B
Assuming the current schema is PUBLIC, a local table is created. id is an identity column with a starting value
of 2 and an increment of 2.

CREATE TABLE Test (id INTEGER GENERATED BY DEFAULT AS IDENTITY (START WITH 2,
INCREMENT BY 2), name VARCHAR(30))

Constraint Definition for Local Tables

Purpose
Defines a constraint for a local table.

Syntax
[CONSTRAINT [constraint_name]
{unique_constraint |
primary_key_constraint |
foreign_key_constraint}]

where:

constraint_name

specifies a name for the constraint.

unique_constraint

specifies a constraint on a single column in the table. See Unique Clause for the syntax.

123Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Table

Values in the constrained column cannot be repeated, except in the case of null values. For example:

ColA
1
2
NULL
4
5
NULL

A single table can have multiple columns with unique constraints.

primary_key_constraint

specifies a constraint on one or more columns in the table. See Primary Key Clause for the syntax.

Values in a single column primary key column must be unique. Values across multiple constrained
columns cannot be repeated, but values within a column can be repeated. Null values are not allowed.
For example:

Col A Col B
2 1
3 1
4 2
5 2
6 2

Only one primary key constraint is allowed in the table.

foreign_key_constraint

defines a link between related tables. See Foreign Key Clause for the syntax.

A column defined as a foreign key in one table references a primary key in the related table. Only
values that are valid in the primary key are valid in the foreign key. The following example is valid
because the foreign key values of the dept id column in the EMP table match those of the id column
in the referenced table DEPT:

Main TableReferenced Table

EMPDEPT

(Foreign Key)

dept idnameidnameid

1Mark1Dev1

3Jim1Finance2

2Mike1Sales3

The following example, however, is not valid. The value 4 in the dept id column does not match any
value in the referenced id column of the DEPT table.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4124

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Main TableReferenced Table

EMPDEPT

(Foreign Key)

dept idnameidnameid

1Mark1Dev1

3Jim1Finance2

4Mike1Sales3

Unique Clause
UNIQUE (column_name [,column_name...]

where:

column_name

specifies the column to which the constraint is applied. Multiple columns names must be separated
by commas.

Primary Key Clause
PRIMARY KEY (column_name [,column_name...])

where:

column_name

specifies the primary key column to which the constraint is applied. Multiple column names must be
separated by commas.

Foreign Key Clause
FOREIGN KEY (fcolumn_name [,fcolumn_name...])
REFERENCES ref_table (pcolumn_name [,pcolumn_name...])
[ON {DELETE | UPDATE}
{CASCADE | SET DEFAULT | SET NULL}]

where:

fcolumn_name

specifies the foreign key column to which the constraint is applied. Multiple column names must be
separated by commas.

ref_table

specifies the table to which a foreign key refers.

125Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create Table

pcolumn_name

specifies the primary key column or columns referenced in the referenced table. Multiple column
names must be separated by commas.

ON DELETE

defines the operation performed when a row in the table referenced by a foreign key constraint is
deleted. One of the following operators must be specified in the On Delete clause:

• CASCADE specifies that all rows in the foreign key table that reference the deleted row in the primary key
table are also deleted.

• SET DEFAULT specifies that the value of the foreign key column is set to the column default value for all
rows in the foreign key table that reference the deleted row in the primary key table.

• SET NULL specifies that the value of the foreign key column is set to NULL for all rows in the foreign key
table that reference the deleted row in the primary key table.

ON UPDATE

defines the operation performed when the primary key of a row in the table referenced by a foreign
key constraint is updated. One of the following operators must be specified in the On Update clause:

• CASCADE specifies that the value of the foreign key column for all rows in the foreign key table that reference
the row in the primary key table that had the primary key updated are updated with the new primary key
value.

• SET DEFAULT specifies that the value of the foreign key column is set to the column default value for all
rows in the foreign key table that reference the row that had the primary key updated in the primary key
table.

• SET NULL specifies that the value of the foreign key column is set to NULL for all rows in the foreign key
table that reference the row that had the primary key updated in the primary key table.

Notes
• You must specify at least one constraint.

• Both the ON DELETE and ON UPDATE clauses can be used in a single foreign key definition.

Example
Assuming the current schema is PUBLIC, the emp table is created with the name, empId, and deptId columns.
The table contains a foreign key constraint on the deptId column that references the id column in the dept
table. In addition, it sets the value of any rows in the deptId column to NULL that point to a deleted row in the
referenced dept table.

CREATE TABLE emp (name VARCHAR(30), empId INTEGER, deptId INTEGER,
FOREIGN KEY(deptId) REFERENCES dept(id) ON DELETE SET NULL)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4126

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Create View
Purpose
Creates a new view. A view is analogous to a named query. The view's query can refer to any combination of
remote and local tables as well as other views. Views are read-only; they cannot be updated.

Syntax
CREATE VIEW view_name[(view_column,...)] AS
SELECT ... FROM ... [WHERE Expression]
[ORDER BY order_expression [, ...]]
[LIMIT limit [OFFSET offset]];

where:

view_name

specifies the name of the view.

view_column

specifies the column associated with the view. Multiple column names must be separated by commas.

The other commands used for Create View are the same as those used for Select (see Select on page 135).

Notes
• A view can be thought of as a virtual table. A Select statement is stored in the database; however, the data

accessible through a view is not stored in the database. The result set of the Select statement forms the
virtual table returned by the view. You can use this virtual table by referring to the view name in SQL
statements the same way you refer to a table. A view is used to perform any or all of these functions:

• Restrict a user to specific rows in a table.

• Restrict a user to specific columns.

• Join columns from multiple tables so that they function like a single table.

• Aggregate information instead of supplying details. For example, the sum of a column, or the maximum
or minimum value from a column can be presented.

• Views are created by defining the Select statement that retrieves the data to be presented by the view.

• The Select statement in a View definition must return columns with distinct names. If the names of two
columns in the Select statement are the same, use a column alias to distinguish between them. Alternatively,
you can define a list of new columns for a view.

Example A
This example creates a view named myOpportunities that selects data from three database tables to present
a virtual table of data.

CREATE VIEW myOpportunities AS
SELECT a.name AS AccountName,

o.name AS OpportunityName,
o.amount AS Amount,
o.description AS Description

127Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Create View

FROM Opportunity o INNER JOIN Account a
ON o.AccountId = a.id
INNER JOIN User u
ON o.OwnerId = u.id

WHERE u.name = 'MyName'
AND o.isClosed = 'false'

ORDER BY Amount desc

You can then refer to the myOpportunities view in statements just as you would refer to a table. For example:

SELECT * FROM myOpportunities;

Example B
The myOpportunities view contains a detailed description for each opportunity, which may not be needed when
only a summary is required. A view can be built that selects only specific myOpportunities columns as shown
in this example:

CREATE VIEW myOpps_NoDesc as
SELECT AccountName,

OpportunityName,
Amount

FROM myOpportunities

The view selects the name column from both the opportunity and account tables. These columns are assigned
the alias OpportunityName and AccountName, respectively.

Delete
Purpose
Deletes rows from a table.

Syntax
DELETE FROM table_name [WHERE search_condition]

where:

table_name

specifies the name of the table from which you want to delete rows.

search_condition

is an expression that identifies which rows to delete from the table.

Notes
• The Where clause determines which rows are to be deleted. Without a Where clause, all rows of the table

are deleted, but the table is left intact. See Where Clause on page 140 for information about the syntax of
Where clauses. Where clauses can contain subqueries.

Example A
This example shows a Delete statement on the emp table.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4128

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

DELETE FROM emp WHERE emp_id = 'E10001'

Each Delete statement removes every record that meets the conditions in the Where clause. In this case, every
record having the employee ID E10001 is deleted. Because employee IDs are unique in the employee table,
at most, one record is deleted.

Example B
This example shows using a subquery in a Delete clause.

DELETE FROM emp WHERE dept_id = (SELECT dept_id FROM dept WHERE dept_name =
'Marketing')

The records of all employees who belong to the department named Marketing are deleted.

Drop Cache (EXT)
Purpose
Drops the cache defined on a remote table. To drop a relational cache, the specified table must be the primary
table of the relational cache. If a relational cache is specified, the cache for the primary table and all referenced
caches are dropped.

Syntax
DROP CACHE ON {remote_table} [IF EXISTS]

where:

remote_table

is the name of the remote table cache to be dropped. The remote table name can be a two-part
name: schemaname.tablename. When specifying a two-part name, the specified remote table must
be mapped in the specified schema, and you must have the privilege to drop objects in the specified
schema.

IF EXISTS

specifies that an error is not to be returned if a cache for the remote table or view does not exist.

Notes
• Caches on views are not supported.

Drop Index
Purpose
Drops an index for a local table.

Syntax
DROP INDEX index_name [IF EXISTS]

129Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Drop Cache (EXT)

where:

index_name

specifies an existing index.

IF EXISTS

specifies that an error is not to be returned if the index does not exist. The Drop Index command
generates an error if an index that is associated with a UNIQUE or FOREIGN KEY constraint is
specified.

Notes
• Indexes on a remote table cannot be dropped. Only indexes on local tables can be created, altered, and

dropped.

Drop Sequence
Purpose
Drops a sequence for a local table.

Syntax
DROP SEQUENCE sequence_name [IF EXISTS] [RESTRICT|CASCADE]

where:

sequence_name

specifies the name of a sequence to drop.

IF EXISTS

specifies that an error is not to be returned if the sequence does not exist.

RESTRICT

is in effect by default, meaning that the drop fails if any view refers to the sequence.

CASCADE

silently drops all dependent database objects.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4130

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Drop Table
Purpose
Drops (removes) a remote or local table, its data, and its indexes. A remote table is a Salesforce object and is
exposed in the SFORCE schema. Dropping a table in the SFORCE schema drops a remote table. A local table
is maintained by the driver and is local to the machine on which the driver is running. A local table is exposed
in the PUBLIC schema. Dropping a table in the PUBLIC schema drops a local table.

Syntax
DROP TABLE table_name [IF EXISTS] [RESTRICT | CASCADE]

where:

table_name

specifies the name of an existing table to drop.

IF EXISTS

specifies that an error is not to be returned if the table does not exist.

RESTRICT

is in effect by default, meaning that the drop fails if any tables or views reference this table.

CASCADE

specifies that the drop extends to linked objects. If the specified table is a local table, it drops all
dependent views and any foreign key constraints that link this table to other tables. If the specified
table is a remote table, any tables that reference the specified table also are dropped.

Drop View
Purpose
Drops a view.

Syntax
DROP VIEW view_name [IF EXISTS] [RESTRICT | CASCADE]

where:

view_name

specifies the name of a view.

IF EXISTS

specifies that an error is not to be returned if the view does not exist.

131Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Drop Table

RESTRICT

is in effect by default, meaning that the drop fails if any other view refers to this view.

CASCADE

silently drops all dependent views.

Explain Plan
Purpose
Retrieves a detailed list of the elements in the execution plan. It generates a result set with a single column
named OPERATION. The individual elements that comprise the plan are returned as rows in the result set.

Syntax
EXPLAIN PLAN FOR {SELECT ... | DELETE ... | INSERT ... | UPDATE ...}

The returned list of elements includes the indexes used for performing the query and can be used to optimize
the query.

Insert
Purpose
Adds new rows to a table. You can specify either of the following options:

• List of values to be inserted as a new row

• Select statement that copies data from another table to be inserted as a set of new rows

Syntax
INSERT INTO table_name [(column_name[,column_name]...)]
{VALUES (expression [,expression]...) | select_statement}

table_name

is the name of the table in which you want to insert rows.

column_name

is optional and specifies an existing column. Multiple column names (a column list) must be separated
by commas. A column list provides the name and order of the columns, the values of which are
specified in the Values clause. If you omit a column_name or a column list, the value expressions
must provide values for all columns defined in the table and must be in the same order that the
columns are defined for the table. Table columns that do not appear in the column list are populated
with the default value, or with NULL if no default value is specified.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4132

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

expression

is the list of expressions that provides the values for the columns of the new record. Typically, the
expressions are constant values for the columns. Character string values must be enclosed in single
quotation marks (’).

select_statement

is a query that returns values for each column_name value specified in the column list. Using a Select
statement instead of a list of value expressions lets you select a set of rows from one table and insert
it into another table using a single Insert statement. The Select statement is evaluated before any
values are inserted. This query cannot be made on the table into which values are inserted.

See also
Specifying an External ID Column on page 133

Literals on page 148

Select on page 135

Specifying an External ID Column
Use the following syntax to specify an external ID column to look up the value of a foreign key column.

Syntax
column_name EXT_ID [schema_name.[table_name.]]ext_id_column

where:

EXT_ID

is used to specify that the column specified by ext_id_column is used to look up the rowid to be
inserted into the column specified by column_name.

schema_name

is the name of the schema of the table that contains the foreign key column being specified as the
external ID column.

table_name

is the name of the table that contains the foreign key column being specified as the external ID
column.

ext_id_column

is the external ID column.

Example A
This example uses a list of expressions to insert records. Each Insert statement adds one record to the database
table. In this case, one record is added to the table emp. Values are specified for five columns. The remaining
columns in the table are assigned the default value or NULL if no default value is specified.

INSERT INTO emp (last_name,
first_name,

133Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Insert

emp_id,
salary,
hire_date)

VALUES ('Smith', 'John', 'E22345', 27500, {1999-04-06})

Example B
This example uses a Select statement to insert records. The number of columns in the result of the Select
statement must match exactly the number of columns in the table if no column list is specified, or it must match
the number of column names specified in the column list. A new entry is created in the table for every row of
the Select result.

INSERT INTO emp1 (first_name,
last_name,
emp_id,
dept,
salary)

SELECT first_name, last_name, emp_id, dept, salary FROM emp
WHERE dept = 'D050'

Example C
This example uses a list of expressions to insert records and specifies an external ID column (a foreign key
column) named accountId that references a table that has an external ID column named AccountNum.

INSERT INTO emp (last_name,
first_name,
emp_id,
salary,
hire_date,
accountId EXT_ID AccountNum)

VALUES ('Smith', 'John', 'E22345', 27500, {1999-04-06}, 0001)

Refresh Cache (EXT)
Purpose
Forces the data in the cache for the specified remote table to be refreshed.

Syntax
REFRESH CACHE ON {remote_table | ALL} [CLEAN]

where:

remote_table

is the name of the remote table cache to be refreshed. The remote table name can be a two-part
name: schemaname.tablename. When specifying a two-part name, the specified remote table must
be mapped in the specified schema, and you must have the privilege to insert, update, and delete
objects in the specified schema.

ALL

forces all caches to be refreshed.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4134

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

CLEAN

is optional and discards the data in the cache for the specified table or view, or all cache data if ALL
is specified, and repopulates the cache with the data in the remote table or view.

Notes
• Caches on views are not supported.

Refresh Schema (EXT)
Purpose
Updates the remote object mapping and other information contained in a remote schema.

Syntax
REFRESH SCHEMA schema_name

where:

schema_name

is the name of the schema to be refreshed.

Select
Purpose
Fetches results from one or more tables. It can operate on local and remote tables in any combination.

Syntax
SELECT select_clausefrom_clause
[where_clause]
[groupby_clause]
[having_clause]
[{UNION [ALL | DISTINCT] |
{MINUS [DISTINCT] | EXCEPT [DISTINCT]} |
INTERSECT [DISTINCT]} select_statement]
[orderby_clause]
[limit_clause]

where:

select_clause

specifies the columns from which results are to be returned by the query. See Select Clause on page
136 for a complete explanation.

135Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Refresh Schema (EXT)

from_clause

specifies one or more tables on which the other clauses in the query operate. See From Clause on
page 139 for a complete explanation.

where_clause

is optional and restricts the results that are returned by the query. See Where Clause on page 140
for a complete explanation.

groupby_clause

is optional and allows query results to be aggregated in terms of groups. See Group By Clause on
page 141 for a complete explanation.

having_clause

is optional and specifies conditions for groups of rows (for example, display only the departments
that have salaries totaling more than $200,000). See Having Clause on page 141 for a complete
explanation.

UNION

is an optional operator that combines the results of the left and right Select statements into a single
result. See Union Operator on page 142 for a complete explanation.

INTERSECT

is an optional operator that returns a single result by keeping any distinct values from the results of
the left and right Select statements. See Intersect Operator on page 143 for a complete explanation.

EXCEPT | MINUS

are synonymous optional operators that return a single result by taking the results of the left Select
statement and removing the results of the right Select statement. See Except and Minus Operators
on page 143 for a complete explanation.

orderby_clause

is optional and sorts the results that are returned by the query. See Order By Clause on page 144 for
a complete explanation.

limit_clause

is optional and places an upper bound on the number of rows returned in the result. See Limit Clause
on page 145 for a complete explanation.

Select Clause

Purpose
Specifies a list of column expressions that identify columns of values that you want to retrieve or an asterisk
(*) to retrieve the value of all columns.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4136

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Syntax
SELECT [{LIMIT offsetnumber | TOP number}] [ALL | DISTINCT]
{* | column_expression [[AS] column_alias] [,column_expression [[AS] column_alias],
...]}
[INTO [DISK | TEMP] new_table]

where:

LIMIT offset number

creates the result set for the Select statement first and then discards the first number of rows specified
by offset and returns the number of remaining rows specified by number. To not discard any of the
rows, specify 0 for offset, for example, LIMIT 0 number. To discard the first offset number of rows
and return all the remaining rows, specify 0 for number, for example, LIMIT offset 0.

TOP number

is equivalent to LIMIT 0number.

column_expression

can be simply a column name (for example, last_name). More complex expressions may include
mathematical operations or string manipulation (for example, salary * 1.05). See SQL Expressions
on page 147 for details. column_expression can also include aggregate functions. See Aggregate
Functions on page 138 for details.

column_alias

can be used to give the column a descriptive name. For example, to assign the alias department to
the column dep:

SELECT dept AS department FROM emp

DISTINCT

eliminates duplicate rows from the result of a query. For example:

SELECT DISTINCT dept FROM emp

INTO

copies the result set into new_table. INTO DISK creates the new table in cached memory. INTO
TEMP creates a temporary table.

Notes
• Separate multiple column expressions with commas (for example, SELECT last_name, first_name,

hire_date).

• Column names can be prefixed with the table name or table alias. For example, SELECT emp.last_name
or e.last_name, where e is the alias for the table emp.

• NULL values are not treated as distinct from each other. The default behavior is that all result rows be
returned, which can be made explicit with the keyword ALL.

137Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Select

Aggregate Functions
The result of a query can be the result of one or more aggregate functions. Aggregate functions return a single
value from a set of rows. An aggregate can be used with a column name (for example, AVG(salary)) or in
combination with a more complex column expression (for example, AVG(salary * 1.07)). The column
expression can be preceded by the DISTINCT operator. The DISTINCT operator eliminates duplicate values
from an aggregate expression.

The following table describes the supported aggregate functions.

Table 10: Aggregate Functions

ReturnsAggregate

The average of the values in a numeric column expression. For example, AVG(salary) returns the
average of all salary column values.

AVG

The number of values in any column expression. For example, COUNT(name) returns the number
of name values. When using COUNT with a column name, COUNT returns the number of non-NULL
column values. A special example is COUNT(*), which returns the number of rows in the set, including
rows with NULL values.

COUNT

The maximum value in any column expression. For example, MAX(salary) returns the maximum
salary column value.

MAX

The minimum value in any column expression. For example, MIN(salary) returns the minimum salary
column value.

MIN

The total of the values in a numeric column expression. For example, SUM(salary) returns the sum
of all salary column values.

SUM

Except for COUNT(*), all aggregate functions exclude NULL values. The returned value type for COUNT is
INTEGER and for MIN, MAX, and AVG it is the same type as the column.

Example A
In this example, only distinct last name values are counted. The default behavior is that all duplicate values be
returned, which can be made explicit with ALL.

COUNT (DISTINCT last_name)

Example B
This example uses the COUNT, MAX, and AVG aggregate functions:

SELECT
COUNT(amount) AS numOpportunities,
MAX(amount) AS maxAmount,
AVG(amount) AS avgAmount

FROM opportunity o INNER JOIN user u
ON o.ownerId = u.id

WHERE o.isClosed = 'false' AND
u.name = 'MyName'

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4138

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

From Clause

Purpose
Indicates the tables to be used in the Select statement.

Syntax
FROM table_name [table_alias] [,...]

where:

table_name

is the name of a table or a subquery. Multiple tables define an implicit inner join among those tables.
Multiple table names must be separated by a comma. For example:

SELECT * FROM emp, dep

Subqueries can be used instead of table names. Subqueries must be enclosed in parentheses. See
Subquery in a From Clause on page 140 for an example.

table_alias

is a name used to refer to a table in the rest of the Select statement. When you specify an alias for
a table, you can prefix all column names of that table with the table alias.

Example
This example specifies two table aliases, e for emp and d for dep:

SELECT e.name, d.deptName
FROM emp e, dep d
WHERE e.deptId = d.id

The equal sign (=) includes only matching rows in the results.

Join in a From Clause

Purpose
Associates multiple tables within a Select statement. Joins may be either explicit or implicit.

Example A
This is the example from the previous section restated as an explicit inner join:

SELECT e.name, d.deptName
FROM emp e INNER JOIN dep d ON e.deptId = d.id;
FROM table_name {RIGHT OUTER | INNER | LEFT OUTER | CROSS} JOIN table.key ON
search-condition

139Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Select

Example B
In this example, two tables are joined using LEFT OUTER JOIN. T1, the first table named includes nonmatching
rows.

SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.key = T2.key

If you use a CROSS JOIN, no ON expression is allowed for the join.

Subquery in a From Clause

Purpose
Used in place of table references (table_name).

Syntax
SELECT * FROM (SELECT * FROM emp WHERE sal > 10000) new_emp, dept WHERE
new_emp.deptno = dept.deptno

See also
Subqueries on page 159

Where Clause

Purpose
Specifies the conditions that rows must meet to be retrieved.

Syntax
WHERE expr1rel_operatorexpr2

where:

expr1

is either a column name, literal, or expression.

expr2

is either a column name, literal, expression, or subquery. Subqueries must be enclosed in parentheses.

rel_operator

is the relational operator that links the two expressions.

Example
This Select statement retrieves the first and last names of employees that make at least $20,000.

SELECT last_name, first_name FROM emp WHERE salary >= 20000

See also
Subqueries on page 159

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4140

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

SQL Expressions on page 147

Group By Clause

Purpose
Specifies the names of one or more columns by which the returned values are grouped. This clause is used
to return a set of aggregate values.

Syntax
GROUP BY column_expression [,...]

where:

column_expression

is either a column name or a SQL expression. Multiple values must be separated by a comma. If
column_expression is a column name, it must match one of the column names specified in the Select
clause. Also, the Group By clause must include all non-aggregate columns specified in the Select
list.

Example
This example totals the salaries in each department:

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id

This statement returns one row for each distinct department ID. Each row contains the department ID and the
sum of the salaries of the employees in the department.

See also
SQL Expressions on page 147

Having Clause

Purpose
Specifies conditions for groups of rows (for example, display only the departments that have salaries totaling
more than $200,000). This clause is valid only if you have already defined a Group By clause.

Syntax
HAVING expr1rel_operatorexpr2

where:

expr1

is a column name, a constant value, or an expression. An expression does not have to match a
column expression in the Select clause.

expr2

is a column name, a constant value, or an expression. An expression does not have to match a
column expression in the Select clause.

141Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Select

rel_operator

is the relational operator that links the two expressions.

Example
This example returns only the departments that have salaries totaling more than $200,000:

SELECT dept_id, sum(salary) FROM emp GROUP BY dept_id HAVING sum(salary) > 200000

See also
SQL Expressions on page 147

Union Operator

Purpose
Combines the results of two Select statements into a single result. The single result is all the returned rows
from both Select statements. By default, duplicate rows are not returned. To return duplicate rows, use the All
keyword (UNION ALL).

Syntax
select_statement
UNION [ALL | DISTINCT] | {MINUS [DISTINCT] | EXCEPT [DISTINCT]} | INTERSECT
[DISTINCT]
select_statement

Notes
• When using the Union operator, the Select lists for each Select statement must have the same number of

column expressions with the same data types and must be specified in the same order.

Example A
This example has the same number of column expressions, and each column expression, in order, has the
same data type.

SELECT last_name, salary, hire_date FROM emp
UNION
SELECT name, pay, birth_date FROM person

Example B
This example is not valid because the data types of the column expressions are different (salary FROM emp
has a different data type than last_name FROM raises). This example does have the same number of
column expressions in each Select statement but the expressions are not in the same order by data type.

SELECT last_name, salary FROM emp
UNION
SELECT salary, last_name FROM raises

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4142

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Intersect Operator

Purpose
Returns a single result set. The result set contains rows that are returned by both Select statements. Duplicates
are returned unless the DISTINCT operator is added.

Syntax
select_statement
INTERSECT [DISTINCT]
select_statement

where:

DISTINCT

eliminates duplicate rows from the results.

Notes
• When using the INTERSECT operator, the Select lists for each Select statement must have the same number

of column expressions with the same data types and must be specified in the same order.

Example A
This example has the same number of column expressions, and each column expression, in order, has the
same data type.

SELECT last_name, salary, hire_date FROM emp
INTERSECT [DISTINCT]
SELECT name, pay, birth_date FROM person

Example B
This example is not valid because the data types of the column expressions are different (salary FROM emp
has a different data type than last_name FROM raises). This example does have the same number of
column expressions in each Select statement but the expressions are not in the same order by data type.

SELECT last_name, salary FROM emp
INTERSECT
SELECT salary, last_name FROM raises

Except and Minus Operators

Purpose
Returns the rows from the left Select statement that are not included in the result of the right Select statement.
These operators are synonymous.

Syntax
select_statement
{EXCEPT [DISTINCT] | MINUS [DISTINCT]}
select_statement

143Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Select

where:

DISTINCT

eliminates duplicate rows from the results.

Notes
• When using either of these operators, the Select lists for each Select statement must have the same number

of column expressions with the same data types and must be specified in the same order.

Example A
This example has the same number of column expressions, and each column expression, in order, has the
same data type.

SELECT last_name, salary, hire_date FROM emp
EXCEPT
SELECT name, pay, birth_date FROM person

Example B
This example is not valid because the data types of the column expressions are different (salary FROM emp
has a different data type than last_name FROM raises). This example does have the same number of
column expressions in each Select statement but the expressions are not in the same order by data type.

SELECT last_name, salary FROM emp
EXCEPT
SELECT salary, last_name FROM raises

Order By Clause

Purpose
Specifies how the rows are to be sorted.

Syntax
ORDER BY sort_expression [DESC | ASC] [,...]

where:

sort_expression

is either the name of a column, a column alias, a SQL expression, or the positioned number of the
column or expression in the select list to use.

The default behavior is an ascending (ASC) sort.

Example
To sort by last_name and then by first_name, you could use either of the following Select statements:

SELECT emp_id, last_name, first_name FROM emp
ORDER BY last_name, first_name

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4144

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

or

SELECT emp_id, last_name, first_name FROM emp
ORDER BY 2,3

In the second example, last_name is the second item in the Select list, so ORDER BY 2,3 sorts by last_name
and then by first_name.

See also
SQL Expressions on page 147

Limit Clause

Purpose
Places an upper bound on the number of rows returned in the result.

Syntax
LIMIT number_of_rows [OFFSET offset_number]

where:

number_of_rows

specifies a maximum number of rows in the result. A negative number indicates no upper bound.

OFFSET

specifies how many rows to skip at the beginning of the result set. offset_number is the number of
rows to skip.

Notes
• In a compound query, the Limit clause can appear only on the final Select statement. The limit is applied

to the entire query, not to the individual Select statement to which it is attached.

Example
This example returns a maximum of 20 rows.

SELECT last_name, first_name FROM emp
WHERE salary > 20000 ORDER BY dept_id LIMIT 20

Set Checkpoint Defrag
Purpose
Sets the threshold for triggering a Checkpoint Defrag. It is used in conjunction with the Checkpoint statement.

Syntax
SET CHECKPOINT DEFRAG size

145Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Set Checkpoint Defrag

where:

size

specifies the threshold size.

Notes
• When a Checkpoint statement is performed, either as a result of the .log file reaching the limit set by Set

Logsize or by the user issuing a Checkpoint statement, the amount of abandoned space in the database
data file(.data) is checked. If it is larger than the value of size, a CHECKPOINT DEFRAG, which eliminates
the abandoned space, is performed instead of CHECKPOINT.

See also
Checkpoint on page 108

Set Logsize
Purpose
Sets the maximum size to which the driver’s embedded database log file can grow before a Checkpoint statement
is performed. When the log file exceeds the specified size, the Checkpoint statement closes and then reopens
the database files, resetting the .log file.

Syntax
SET LOGSIZE size

where:

size

specifies the maximum size (in MB) of the .log file. The default is 200 MB. A value of 0 means no
limit is imposed on the size of the log file.

See also
Checkpoint on page 108

Update
Purpose
Changes the value of columns in selected rows of a table.

Syntax
UPDATE table_name SET column_name = expression [, column_name = expression] [WHERE
conditions]

where:

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4146

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

table_name

is the name of the table for which you want to update values.

column_name

is the name of a column, the value of which is to be changed. Multiple column values can be changed
in a single statement.

expression

is the new value for the column. The expression can be a constant value or a subquery that returns
a single value. Subqueries must be enclosed in parentheses.

Notes
• A Where clause can be used to restrict which rows are updated.

Example A
This example changes every record that meets the conditions in the Where clause. In this case, the salary and
exempt status are changed for all employees having the employee ID E10001. Because employee IDs are
unique in the emp table, only one record is updated.

UPDATE emp SET salary=32000, exempt=1
WHERE emp_id = 'E10001'

Example B
This example uses a subquery. In this example, the salary is changed to the average salary in the company
for the employee having employee ID E10001.

UPDATE emp SET salary = (SELECT avg(salary) FROM emp)
WHERE emp_id = 'E10001'

See also
Subqueries on page 159

Where Clause on page 140

SQL Expressions
An expression is a combination of one or more values, operators, and SQL functions that evaluate to a value.
You can use expressions in the Where, Having, and Order By clauses of Select statements; and in the Set
clauses of Update statements.

Expressions enable you to use mathematical operations as well as character string manipulation operators to
form complex queries.

The Salesforce driver supports both unquoted and quoted identifiers. An unquoted identifier must start with an
ASCII alpha character and can be followed by zero or more ASCII alphanumeric characters. Unquoted identifiers
are converted to uppercase before being used.

147Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Expressions

Quoted identifiers must be enclosed in double quotation marks (""). A quoted identifier can contain any Unicode
character including the space character. The Salesforce driver recognizes the Unicode escape sequence \uxxxx
as a Unicode character. You can specify a double quotation mark in a quoted identifier by escaping it with a
double quotation mark.

The maximum length of both quoted and unquoted identifiers is 128 characters.

Valid expression elements are:

• Column names

• Literals

• Operators

• Functions

Column Names
The most common expression is a simple column name. You can combine a column name with other expression
elements.

Literals
Literals are fixed data values. For example, in the expression PRICE * 1.05, the value 1.05 is a constant.
Literals are classified into types, including the following:

• Binary

• Character string

• Date

• Floating point

• Integer

• Numeric

• Time

• Timestamp

The following table describes the literal format for supported SQL data types.

Table 11: Literal Syntax Examples

ExampleLiteral SyntaxSQL Type

12 or -34 or 0n

where:

n is any valid integer value in the range of the
INTEGER data type.

BIGINT

0

1

Min Value: 0

Max Value: 1

BOOLEAN

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4148

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

ExampleLiteral SyntaxSQL Type

'2010-05-21''yyyy-mm-dd'DATE

'2010-05-21 18:33:05.025''yyyy-mm-dd hh:mm:ss.SSSSSS'DATETIME

0.25

3.1415

-7.48

n.f

where:

n is the integral part.

f is the fractional part.

DECIMAL

1.2E0 or 2.5E40 or -3.45E2 or
5.67E-4

n.fEx

where:

n is the integral part.

f is the fractional part.

x is the exponent.

DOUBLE

12 or -34 or 0n

where:

n is a valid integer value in the range of the
INTEGER data type

INTEGER

'000482ff''hex_value'LONGVARBINARY

'This is a string literal''value'LONGVARCHAR

'18:33:05''hh:mm:ss'TIME

'This is a string literal''value'VARCHAR

Character String Literals
Text specifies a character string literal. A character string literal must be enclosed in single quotation marks.
To represent one single quotation mark within a literal, you must enter two single quotation marks. When the
data in the fields is returned to the client, trailing blanks are stripped.

A character string literal can have a maximum length of 32 KB, that is, (32*1024) bytes.

Example
'Hello'

'Jim''s friend is Joe'

Integer Literals
Integer literals are represented by a string of numbers that are not enclosed in quotation marks and do not
contain decimal points.

149Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Expressions

Notes
• Integer constants must be whole numbers; they cannot contain decimals.

• Integer literals can start with sign characters (+/-).

Example
1994 or -2

Numeric Literals
Unquoted numeric values are treated as numeric literals. If the unquoted numeric value contains a decimal
point or exponent, it is treated as a real literal; otherwise, it is treated as an integer literal.

Example
+1894.1204

Binary Literals
Binary literals are represented with single quotation marks. The valid characters in a binary literal are 0-9, a-f,
and A-F.

Example
'00af123d'

Date/Time Literals
Date and time literal values are:

• A Date literal is enclosed in single quotation marks (' '). The format is yyyy-mm-dd.

• A Time literal is enclosed in single quotation marks (' '). The format is hh:mm:ss.

• A Timestamp is enclosed in single quotation marks (' '). The format is yyyy-mm-dd hh:mm:ss.SSSSSS.

Operators
This section describes the operators that can be used in SQL expressions.

Unary Operator
operator operand

Binary Operator
operand1 operator operand2

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4150

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

If an operator is given a null operand, the result is always null. The only operator that does not follow this rule
is concatenation (||).

Arithmetic Operators
You can use an arithmetic operator in an expression to negate, add, subtract, multiply, and divide numeric
values. The result of this operation is also a numeric value. The + and - operators are also supported in date/time
fields to allow date arithmetic. The following table lists the supported arithmetic operators.

Table 12: Arithmetic Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE comm = -1Denotes a positive or negative expression. These
are unary operators.

+ -

UPDATE emp SET sal = sal + sal * 0.10Multiplies, divides. These are binary operators.* /

SELECT sal + comm FROM emp WHERE empno
> 100

Adds, subtracts. These are binary operators.+ -

Concatenation Operator
The concatenation operator manipulates character strings. The following table lists the only supported
concatenation operator.

Table 13: Concatenation Operator

ExamplePurposeOperator

SELECT 'Name is' || ename FROM empConcatenates character strings.||

The result of concatenating two character strings is the data type VARCHAR.

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison can be TRUE,
FALSE, or UNKNOWN (if one of the operands is NULL). The Salesforce driver considers the UNKNOWN result
as FALSE. The following table lists the supported comparison operators.

151Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Operators

Table 14: Comparison Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE sal = 1500
Equality test.=

SELECT * FROM emp WHERE sal != 1500
Inequality test.!= <>

SELECT * FROM emp WHERE sal > 1500
SELECT * FROM emp WHERE sal < 1500

“Greater than" and "less than" tests.> <

SELECT * FROM emp WHERE sal >= 1500
SELECT * FROM emp WHERE sal <= 1500

“Greater than or equal to" and "less than or
equal to" tests.

>= <=

SELECT * FROM emp WHERE job IN
('CLERK','ANALYST')

“Equal to any member of" test.[NOT] IN

SELECT * FROM emp WHERE sal IN
(SELECT sal FROM emp WHERE deptno =
30)

SELECT * FROM emp WHERE sal BETWEEN

2000 AND 3000

"Greater than or equal to x" and "less than or
equal to y."

[NOT] BETWEEN x
AND y

SELECT empno, ename, deptno FROM
emp e

Tests for existence of rows in a subquery.EXISTS

WHERE EXISTS (SELECT deptno FROM
dept WHERE e.deptno = dept.deptno)

SELECT * FROM emp WHERE ename
IS

Tests whether the value of the column or
expression is NULL.

IS [NOT] NULL

NOT NULL
SELECT * FROM emp WHERE ename IS
NULL

SELECT * FROM emp WHERE ENAME LIKE
'J%_%' ESCAPE '\'

The Escape clause is supported in the LIKE
predicate to indicate the escape character.
Escape characters are used in the pattern

ESCAPE clause in
LIKE operatorLIKE
’pattern string’
ESCAPE ’c’ This matches all records with names that start

with letter 'J' and have the '_' character in them.

SELECT * FROM emp WHERE ENAME LIKE
'JOE_JOHN' ESCAPE '\'

string to indicate that any wildcard character
that is after the escape character in the pattern
string should be treated as a regular character.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4152

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

ExamplePurposeOperator

The default escape character is backslash (\). This matches only records with name
’JOE_JOHN’.

Logical Operators
A logical operator combines the results of two component conditions to produce a single result or to invert the
result of a single condition. The following table lists the supported logical operators.

Table 15: Logical Operators

ExamplePurposeOperator

SELECT * FROM emp WHERE NOT (job
IS NULL)
SELECT * FROM emp WHERE NOT (sal
BETWEEN 1000 AND 2000)

Returns TRUE if the following condition is
FALSE. Returns FALSE if it is TRUE. If it is
UNKNOWN, it remains UNKNOWN.

NOT

SELECT * FROM emp WHERE job =
'CLERK' AND deptno = 10

Returns TRUE if both component conditions
are TRUE. Returns FALSE if either is FALSE;
otherwise, returns UNKNOWN.

AND

SELECT * FROM emp WHERE job =
'CLERK' OR deptno = 10

Returns TRUE if either component condition
is TRUE. Returns FALSE if both are FALSE;
otherwise, returns UNKNOWN.

OR

Example
In the Where clause of the following Select statement, the AND logical operator is used to ensure that managers
earning more than $1000 a month are returned in the result:

SELECT * FROM emp WHERE jobtitle = manager AND sal > 1000

Operator Precedence
As expressions become more complex, the order in which the expressions are evaluated becomes important.
The following table shows the order in which the operators are evaluated. The operators in the first line are
evaluated first, then those in the second line, and so on. Operators in the same line are evaluated left to right
in the expression.You can change the order of precedence by using parentheses. Enclosing expressions in
parentheses forces them to be evaluated together.

Table 16: Operator Precedence

OperatorPrecedence

+ (Positive), - (Negative)1

*(Multiply), / (Division)2

+ (Add), - (Subtract)3

153Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Operators

OperatorPrecedence

|| (Concatenate)4

=, >, <, >=, <=, <>, != (Comparison operators)5

NOT, IN, LIKE6

AND7

OR8

Example A
The query in this example returns employee records for which the department number is 1 or 2 and the salary
is greater than $1000:

SELECT * FROM emp WHERE (deptno = 1 OR deptno = 2) AND sal > 1000

Because parenthetical expressions are forced to be evaluated first, the OR operation takes precedence over
AND.

Example B
In this example, the query returns records for all the employees in department 1, but only employees whose
salary is greater than $1000 in department 2.

SELECT * FROM emp WHERE deptno = 1 OR deptno = 2 AND sal > 1000

The AND operator takes precedence over OR, so that the search condition in the example is equivalent to the
expression deptno = 1 OR (deptno = 2 AND sal > 1000).

Functions
The Salesforce driver supports a number of functions that you may use in expressions, as listed and described
in the tables in this section.

Table 17: Numerical Functions Supported

DescriptionNumerical Function

Returns the absolute value of a double value.ABS(d)

Returns the arc cosine of an angle.ACOS(d)

Returns the arc sine of an angle.ASIN(d)

Returns the arc tangent of an angle.ATAN(d)

Returns the tangent of a/b.ATAN2(a,b)

Returns a and b.BITAND(a,b)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4154

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

DescriptionNumerical Function

Returns a or b.BITOR(a,b)

Returns the smallest integer that is not less than d.CEILING(d)

Returns the cosine of an angle.COS(d)

Returns the cotangent of an angle.COT(d)

Converts radians to degrees.DEGREES(d)

Returns e (2.718... raised to the power of d).EXP(d)

Returns the largest integer that is not greater than d.FLOOR(d)

Returns the natural logarithm (base e).LOG(d)

Returns the logarithm (base 10).LOG10(d)

Returns a modulo b.MOD(a,b)

Returns pi (3.1415...).PI()

Returns a raised to the power of b.POWER(a,b)

Converts degrees to radians.RADIANS(d)

Returns a random number x bigger or equal to 0.0 and smaller than
1.0.

RAND()

Rounds a to b digits after the decimal point.ROUND(a,b)

Solves rounding problems such as 3.11-3.1-0.01.ROUNDMAGIC(d)

Returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0.SIGN(d)

Returns the sine of an angle.SIN(d)

Returns the square root.SQRT(d)

Returns the trigonometric tangent of an angle.TAN(A)

Truncates a to b digits after the decimal point.TRUNCATE(a,b)

Table 18: String Functions Supported

DescriptionString Function

Returns the ASCII code of the leftmost character of s.ASCII(s)

Returns the length of the string in bits.BIT_LENGTH(str)

155Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Functions

DescriptionString Function

Returns a character that has the ASCII code c.CHAR(c)

Returns the length of the string in characters.CHAR_LENGTH(str)

Returns the string that results from concatenating str1 + str2.CONCAT(str1,str2)

Returns the difference between the sound of s1 and s2.DIFFERENCE(s1,s2)

Returns a translated string/.HEXTORAW(s1)

Returns a string where len number of characters beginning at start has
been replaced by s2.

INSERT(s,start,len,s2)

Converts s to lower case.LCASE(s)

Returns the leftmost count of characters of s. If s requires double
quoting, use SUBSTRING() instead.

LEFT(s,count)

Returns the number of characters in s.LENGTH(s)

Returns the first index (1=left, 0=not found) where search is found in
s, starting at start.

LOCATE(search,s,[start])

Removes all leading blanks in s.LTRIM(s)

Returns the length of the string in bytes (twice the number of
characters).

OCTET_LENGTH(str)

Returns translated string.RAWTOHEX(s1)

Returns s repeated count times.REPEAT(s,count)

Returns s with all occurrences of replace replaced with s2.REPLACE(s,replace,s2)

Returns the right-most count of characters of s.RIGHT(s,count)

Removes all trailing spaces in s.RTRIM(s)

Returns a 4-character code representing the sound of s.SOUNDEX(s)

Returns a string consisting of count spaces.SPACE(count)

Alias for substring.SUBSTR(s,start[,len])

Returns the substring starting at start (1=left) with length len.SUBSTRING(s,start[,len])

Converts s to uppercase.UCASE(s)

Converts s to lowercase.LOWER(s)

Converts s to uppercase.UPPER(s)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4156

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Table 19: Date/Time Functions Supported

DescriptionDate/Time Function

Returns the current date.CURDATE()

Returns the current time.CURTIME()

Returns the count of units of time elapsed from datetime1 to datetime2.
The string indicates the unit of time and can have the following values:

• 'ms'='millisecond'

• 'ss'='second'

• 'mi'='minute'

• 'hh'='hour'

• 'dd'='day'

• 'mm'='month'

• 'yy' = 'year'

Both the long and short form of the strings can be used.

DATEDIFF(string, datetime1, datetime2)

Returns the name of the day.DAYNAME(date)

Returns the day of the month (1-31).DAYOFMONTH(date)

Returns the day of the week (1 means Sunday).DAYOFWEEK(date)

Returns the day of the year (1-366).DAYOFYEAR(date

Returns the hour (0-23).HOUR(time)

Returns the minute (0-59).MINUTE(time)

Returns the month (1-12).MONTH(date)

Returns the name of the month.MONTHNAME(date)

Returns the current date and time as a timestamp.NOW()

Returns the quarter (1-4).QUARTER(date)

Returns the second (0-59).SECOND(time)

Returns the week of this year (1-53).WEEK(date)

Returns the year.YEAR(date)

Returns the current date.CURRENT_DATE

Returns the current time.CURRENT_TIME

Returns the current timestamp.CURRENT_TIMESTAMP

157Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Functions

Table 20: System/Connection Functions Supported

DescriptionSystem/Connection Function

Returns the name of the database of this connection.DATABASE()

Returns the user name of this connection.USER()

SQL standard function, returns the user name of this connection.CURRENT_USER

Returns the ID of the session (connection) on which this function was
invoked.

CURSESSIONID()

Returns the last identity value that was inserted by this connection.IDENTITY()

Table 21: System Functions Supported

DescriptionSystem Function

If expr is NULL, then value is returned; otherwise the result of expr is
returned. See COALESCE(expr1, expr2, ...) in this table for evaluating
multiple expressions.

IFNULL(expr,value)

Converts term to another data type.CONVERT(term,type)

Converts term to another data type.CAST(term AS type)

If expr1 is not Null, then it is returned; otherwise, expr2 is evaluated
and, if not Null, it is returned, and so on. This is an ANSISQL standard
system function.

COALESCE(expr1,expr2, ...)

If value1 equals value2, then Null is returned; otherwise, value1 is
returned.

NULLIF(value1,value2)

When value1 equals value2, then value3 is returned; otherwise, value4
or Null is returned in the absence of ELSE.

CASE value1 WHEN value2 THEN value3
[ELSE value4] END

When expr1 is true, then value1 is returned (optionally repeated for
more cases); otherwise value4 or Null is returned in the absence of
ELSE.

CASE WHEN expr1 THEN value1 [WHEN
expr2 THEN value2] [ELSE value4] END

Any of the date and time terms can be extracted from datetime_value.EXTRACT ({YEAR | MONTH | DAY | HOUR |
MINUTE| SECOND} FROM datetime_value)

If string_expression1 is a sub-string of string_expression2, then the
position of the sub-string, counting from one, is returned; otherwise, 0
is returned.

POSITION(string_expression1 IN
string_expression2)

string_expression is returned from the numeric_expression1 starting
location. Optionally, numeric_expression2 specifies the length of the
substring.

SUBSTRING(string_expression FROM
numeric_expression1 [FOR
numeric_expression2])

When returned, either the leading or trailing spaces, or both, are
trimmed from string_expression.

TRIM([{LEADING | TRAILING | BOTH}] FROM
string_expression)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4158

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Conditions
A condition specifies a combination of one or more expressions and logical operators that evaluates to either
TRUE, FALSE, or UNKNOWN. You can use a condition in the Where clause of the Delete, Select, and Update
statements; and in the Having clauses of Select statements. The following table describes supported conditions.

Table 22: Conditions

DescriptionCondition

Specifies a comparison with expressions or subquery results.

= , !=, <>, < , >, <=, <=

Simple comparison

Specifies a comparison with any or all members in a list or subquery

.[= , !=, <>, < , >, <=, <=] [ANY, ALL, SOME]

Group comparison

Tests for membership in a list or subquery.

[NOT] IN

Membership

Tests for inclusion in a range.

[NOT] BETWEEN

Range

Tests for nulls.

IS NULL, IS NOT NULL

NULL

Tests for existence of rows in a subquery.

[NOT] EXISTS

EXISTS

Specifies a test involving pattern matching.

[NOT] LIKE

LIKE

Specifies a combination of other conditions.

CONDITION [AND/OR] CONDITION

Compound

Subqueries
A query is an operation that retrieves data from one or more tables or views. In this reference, a top-level query
is called a Select statement, and a query nested within a Select statement is called a subquery.

A subquery is a query expression that appears in the body of another expression such as a Select, an Update,
or a Delete statement. In the following example, the second Select statement is a subquery:

SELECT * FROM emp WHERE deptno IN
(SELECT deptno FROM dept)

159Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Conditions

IN Predicate

Purpose
Specifies a set of values against which to compare a result set. If the values are being compared against a
subquery, only a single column result set is returned.

Syntax
value [NOT] IN (value1, value2,...)
OR
value [NOT] IN (subquery)

Example
SELECT * FROM emp WHERE deptno IN
(SELECT deptno FROM dept WHERE dname <> 'Sales')

EXISTS Predicate

Purpose
Tests the cardinality of a subquery. It is true only if the cardinality of the subquery is greater than 0; otherwise,
it is false.

Syntax
EXISTS (subquery)

Example
SELECT empno, ename, deptno FROM emp e WHERE EXISTS
(SELECT deptno FROM dept WHERE e.deptno = dept.deptno)

UNIQUE Predicate

Purpose
Determines whether duplicate rows exist in a virtual table (one returned from a subquery).

Syntax
UNIQUE (subquery)

Example
SELECT * FROM dept d WHERE UNIQUE
(SELECT deptno FROM emp e WHERE e.deptno = d.deptno)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4160

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

Correlated Subqueries

Purpose
A correlated subquery is a subquery that references a column from a table referred to in the parent statement.
A correlated subquery is evaluated once for each row processed by the parent statement. The parent statement
can be a Select, Update, or Delete statement.

A correlated subquery answers a multiple-part question in which the answer depends on the value in each row
processed by the parent statement. For example, you can use a correlated subquery to determine which
employees earn more than the average salaries for their departments. In this case, the correlated subquery
specifically computes the average salary for each department.

Syntax
SELECT select_list

FROM table1 t_alias1
WHERE expr rel_operator
(SELECT column_list
FROM table2t_alias2
WHERE t_alias1.columnrel_operatort_alias2.column)

UPDATE table1 t_alias1
SET column =
(SELECT expr
FROM table2 t_alias2
WHERE t_alias1.column = t_alias2.column)

DELETE FROM table1 t_alias1
WHERE column rel_operator
(SELECT expr
FROM table2 t_alias2
WHERE t_alias1.column = t_alias2.column)

Notes
• Correlated column names in correlated subqueries must be explicitly qualified with the table name of the

parent.

Example A
This statement returns data about employees whose salaries exceed their department average. It assigns an
alias to emp, the table containing the salary information, and then uses the alias in a correlated subquery:

SELECT deptno, ename, sal FROM emp x WHERE sal >
(SELECT AVG(sal) FROM emp WHERE x.deptno = deptno)
ORDER BY deptno

Example B
This example specifies a correlated subquery that returns row values:

SELECT * FROM dept "outer" WHERE 'manager' IN
(SELECT managername FROM emp
WHERE "outer".deptno = emp.deptno)

161Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Subqueries

Example C
This example finds the department number (deptno) with multiple employees:

SELECT * FROM dept main WHERE 1 <
(SELECT COUNT(*) FROM emp WHERE deptno = main.deptno)

Example D
This example correlates a table with itself:

SELECT deptno, ename, sal FROM emp x WHERE sal >
(SELECT AVG(sal) FROM emp WHERE x.deptno = deptno)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4162

Chapter 4: Supported SQL Statements and Extensions for the Salesforce Driver

5
getTypeInfo()

This chapter provides results returned from the DataBaseMetaData.getTypeInfo() method for the drivers. The
getTypeInfo() method returns information about data types supported by a particular database. The information
in this chapter is organized by driver, and within each section, the results are organized alphabetically for each
TYPE_NAME column.

For details, see the following topics:

• DB2 Driver

• Informix Driver

• MySQL Driver

• Oracle Driver

• PostgreSQL Driver

• Progress OpenEdge Driver

• SQL Server Driver

• Sybase Driver

• The Driver for Apache Hive

• Greenplum Driver

• Salesforce Driver

163Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver
The following table provides getTypeInfo() results for all DB2 databases supported by the DB2 driver. Refer
to "DB2 Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

Table 23: getTypeInfo() for DB2

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint 1

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bigint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary 1

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = BINARY(X'

LITERAL_SUFFIX = ')

LOCAL_TYPE_NAME = binary

MAXIMUM_SCALE = NULL

1 Supported only for DB2 v9.1 and higher for z/OS.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4164

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = blob 2

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = (length)

DATA_TYPE = 2004 (BLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BLOB

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

254 (DB2 for Linux/UNIX/Windows),

255 (DB2 for z/OS),

32765 (DB2 for i)

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = (length)

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

2 Supported only for DB2 v8.1 and higher for Linux/UNIX/Windows, DB2 for z/OS, and DB2 for i.

165Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

254 (DB2 for Linux/UNIX/Windows),

254 (DB2 for z/OS),

32765 (DB2 for i)

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char() for bit data

AUTO_INCREMENT = NULL

NULL CASE_SENSITIVE = false

CREATE_PARAMS = (length)

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = X'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char() for bit data

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = clob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = (length)

DATA_TYPE = 2005 (CLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = clob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {d ' LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4166

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = dbclob 3

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS =

(length) (DB2 for Linux/UNIX/Windows

and DB2 for z/OS),

(length) CCSID 13488 (DB2 for i)

DATA_TYPE = 2005 (CLOB) 4

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = dbclob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 34

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decfloat 5

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = NULL

MAXIMUM_SCALE = 0

3 Supported only for DB2 v8.1 and higher for Linux/UNIX/Windows, DB2 for z/OS, and DB2 for i.
4 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2011 (NCLOB) (if using

Java SE 6 or higher) or 2005 (CLOB) (if using another JVM).
5 Supported only for DB2 V9.5 and higher for Linux/UNIX/Windows, DB2 v9.1 for z/OS, and DB2 for i 6.1.

167Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 31

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = (precision,scale)

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal

MAXIMUM_SCALE = 31

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = double

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = double

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 6 (FLOAT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4168

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

127 (DB2 for Linux/UNIX/Windows),

127 (DB2 for z/OS),

16352 (DB2 for i)

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = graphic

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR) 6

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = integer

MAXIMUM_SCALE = 0

6 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -15 (NCHAR) (if using
Java SE 6 or higher) or 1 (CHAR) (if using another JVM).

169Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

32700 (DB2 for Linux/UNIX/Windows),

32704 (DB2 for z/OS),

32700 (DB2 for i)

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = long varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = long varchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

32700 (DB2 for Linux/UNIX/Windows),

32698 (DB2 for z/OS),

32739 (DB2 for i)

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = long varchar for bit data

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = X'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = long varchar for bit data

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4170

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16352

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = long vargraphic

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = -1 (LONGVARCHAR) 7

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = longvarchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX =10

PRECISION = 31

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = (precision,scale)

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = numeric

MAXIMUM_SCALE = 31

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float(4)

MAXIMUM_SCALE = NULL

7 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -16 (LONGNVARCHAR)
(if using Java SE 6 or higher) or -1 (LONGVARCHAR) (if using another JVM).

171Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 40

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = rowid 8

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = not null generated always

DATA_TYPE = -2 (Binary)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = rowid

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t ' LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = time

MAXIMUM_SCALE = NULL

8 Supported only for DB2 for z/OS and DB2 for i5/OS V5R2 and higher.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4172

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 6

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 26

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = timestamp

MAXIMUM_SCALE = 6

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32703

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary 9

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -3 (VARVINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = VARBINARY(X'

LITERAL_SUFFIX = ')

LOCAL_TYPE_NAME = varbinary

MAXIMUM_SCALE = NULL

9 Supported only for DB2 v9.1 for z/OS.

173Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DB2 Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

32762 (DB2 for Linux/UNIX/Windows),

32698 (DB2 for z/OS),

32739 (DB2 for i)

SEARCHABLE =

3 (DB2 for Linux/UNIX/Windows),

1 (DB2 for z/OS),

1 (DB2 for i)

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = (max length)

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

32762 (DB2 for Linux/UNIX/Windows),

32698 (DB2 for z/OS),

32739 (DB2 for i)

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar() for bit data

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = (max length)

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = X'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar() for bit data

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4174

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16352

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = vargraphic

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 12 (VARCHAR) 10

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = xml 11

AUTO_INCREMENT = false

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 2005 (CLOB) or 2009 (SQLXML) 12

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = xml

MAXIMUM_SCALE = NULL

Informix Driver
The following table provides getTypeInfo() results for all Informix databases supported by the Informix driver.
Refer to "Informix Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

10 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -9 (NVARCHAR) (if using
Java SE 6 or higher) or 12 (VARCHAR) (if using another JVM).

11 Supported only for DB2 V9.1 and higher for Linux/UNIX/Windows and DB2 v9.1 for z/OS.
12 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2009 (SQLXML) (if using

Java SE 6 or higher) or 2005 (CLOB) (if using another JVM). In addition, the XMLDescribeType property can override driver
mappings.

175Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Informix Driver

Table 24: getTypeInfo() for Informix

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = blob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 2004 (BLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = blob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = boolean

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 16 (BOOLEAN)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = boolean

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = byte

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = byte

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4176

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32766

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = clob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 2005 (CLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = clob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {d '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = NULL

177Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Informix Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime hour to second

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = datetime hour to second

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime year to day

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {d '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = datetime year to day

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 5

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 25

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime year to fraction(5)

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = datetime year to fraction(5)

MAXIMUM_SCALE = 5

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4178

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime year to second

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = datetime year to second

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 32

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal

MAXIMUM_SCALE = 32

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 6 (FLOAT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float

MAXIMUM_SCALE = NULL

179Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Informix Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = int8

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = int8

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = integer

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

2048 (Informix 9.2, 9.3),

32739 (Informix 9.4, 10)

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = lvarchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS =

NULL (Informix 9.2, 9.3),

max length (Informix 9.4, 10)

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = lvarchar

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4180

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 32

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = money

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = money

MAXIMUM_SCALE = 32

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32766

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR) 13

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 254

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nvarchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR) 14

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nvarchar

MAXIMUM_SCALE = NULL

13 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -15 (NCHAR) (if using
Java SE 6 or higher) or 1 (CHAR) (if using another JVM).

14 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -9 (NVARCHAR) (if using
Java SE 6 or higher) or 12 (VARCHAR) (if using another JVM).

181Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Informix Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = serial

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = start

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = serial

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = serial8

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = serial8

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallfloat

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallfloat

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4182

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = text

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 254

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = NULL

183Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Informix Driver

MySQL Driver
The following table provides getTypeInfo() results for MySQL 5.0.x and 5.1. Refer to "MySQL Driver" in the
DataDirect Connect Series for JDBC User’s Guide for more information.

Table 25: getTypeInfo() for MySQL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BIGINT

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 20

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = bigint unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BIGINT

UNSIGNED MAXIMUM_SCALE = 0

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4184

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BINARY

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 64

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = b'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = BIT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 65535

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = blob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BLOB

MAXIMUM_SCALE = NULL

185Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

MySQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = CHAR

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATETIME

MAXIMUM_SCALE = 0

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4186

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 65

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = DECIMAL

MAXIMUM_SCALE = 30

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 65

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = decimal unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = DECIMAL

UNSIGNED MAXIMUM_SCALE = 30

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = double

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = DOUBLE

MAXIMUM_SCALE = NULL

187Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

MySQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = double unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = DOUBLE

UNSIGNED MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = FLOAT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = float unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = FLOAT

UNSIGNED MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4188

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = INTEGER

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = integer unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = INTEGER

UNSIGNED MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = longblob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = LONGBLOB

MAXIMUM_SCALE = NULL

189Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

MySQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = longtext

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGTEXT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16777215

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = mediumblob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = MEDIUMBLOB

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = mediumint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = MEDIUMINT

MAXIMUM_SCALE = 0

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4190

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = mediumint unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = MEDIUMINT

UNSIGNED MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16777215

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = mediumtext

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = MEDIUMTEXT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = SMALLINT

MAXIMUM_SCALE = 0

191Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

MySQL Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = smallint unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = SMALLINT

UNSIGNED MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 65535

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TEXT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TIME

MAXIMUM_SCALE = 0

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4192

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TIMESTAMP

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = tinyblob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = TINYBLOB

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = tinyint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = TINYINT

MAXIMUM_SCALE = 0

193Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

MySQL Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = tinyint unsigned

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = TINYINT

UNSIGNED MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = tinytext

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TINYTEXT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = VARBINARY

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4194

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = VARCHAR

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 4

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = year

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = YEAR

MAXIMUM_SCALE = 0

Oracle Driver
The following table provides getTypeInfo() results for all Oracle databases supported by the Oracle driver.
Refer to "Oracle Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

195Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Oracle Driver

Table 26: getTypeInfo() for Oracle

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bfile

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 2004 (BLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = bfile

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = binary_double 15

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = binary_double

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = binary_float 15

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = binary_float

MAXIMUM_SCALE = NULL

15 Supported only for Oracle 10g and higher.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4196

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = blob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 2004 (BLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = blob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = clob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 2005 (CLOB)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = clob

MAXIMUM_SCALE = NULL

197Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Oracle Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = long

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = long

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = long raw

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = long raw

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4198

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32766

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR) 16

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nclob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 2005 (CLOB) 17

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nclob

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = -84

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 38

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = number

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = number

MAXIMUM_SCALE = 127

16 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -15 (NCHAR) (if using
Java SE 6 or higher) or 1 (CHAR) (if using another JVM).

17 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2001 (NCLOB) (if using
Java SE 6 or higher) or 2005 (CLOB) (if using another JVM).

199Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Oracle Driver

MINIMUM_SCALE = -84

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 38

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = number

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = number

MAXIMUM_SCALE = 127

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 4000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nvarchar218

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR) 19

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nvarchar2

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = raw18

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = raw

MAXIMUM_SCALE = NULL

18 Supported as an extended data type for Oracle 12c and higher. Refer to "Using Extended Data Types" in the Oracle chapter of
the Connect for JDBC User's Guide for details.

19 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -9 (NVARCHAR) (if using
Java SE 6 or higher) or 12 (VARCHAR) (if using another JVM).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4200

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp 20

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = timestamp

MAXIMUM_SCALE = 9

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp with local time zone 20

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = timestamp with local time zone

MAXIMUM_SCALE = 9

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp with time zone 20

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 12 (VARCHAR) or 93 (TIMESTAMP) 21

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts '

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = timestamp with time zone

MAXIMUM_SCALE = 9

20 Supported only for Oracle 9i and higher.
21 When FetchTSWTZasTimestamp=false (default), this data type is mapped to the JDBC VARCHAR data type; when

FetchTSWTZasTimestamp=true, it is mapped to the JDBC TIMESTAMP data type.

201Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Oracle Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 4000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = urowid 20

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = urowid

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 4000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar220 ,18

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar2

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = xmltype 22

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 2005 (CLOB) 23

FIXED_PREC_SCALE = false

LITERAL_PREFIX = xmltype('

LITERAL_SUFFIX = ')

LOCAL_TYPE_NAME = xmltype

MAXIMUM_SCALE = NULL

22 Supports XMLType columns, except those with binary or object relational storage.
23 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2009 (SQLXML) (if using

Java SE 6 or higher) or 2005 (CLOB) (if using another JVM).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4202

Chapter 5: getTypeInfo()

PostgreSQL Driver
The following table provides getTypeInfo() results for PostgreSQL databases supported by the driver. Refer
to "PostgreSQL Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

Table 27: getTypeInfo() for PostgreSQL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Bigint

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigserial

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Bigserial

MAXIMUM_SCALE = NULL

203Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

PostgreSQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 83886080

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit 24

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bit

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 83886080

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit varying

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bit varying

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = boolean

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 16 (BOOLEAN)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Boolean

MAXIMUM_SCALE = NULL

24 Bit maps to -7 (BIT) when the length for the bit is 1. If the length is greater than 1, the driver maps the column to BINARY.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4204

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bytea

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bytea

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10485760

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = character

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Character

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10485760

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = character varying 25

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Character varying

MAXIMUM_SCALE = NULL

25 Columns of this type will be described as VARCHAR when precision is 4000 or less. If precision is greater than 4000, columns
will be described as LONGVARCHAR.

205Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

PostgreSQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {d'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 53

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = double precision

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Double precision

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Integer

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4206

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 999

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = numeric

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Numeric

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 24

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Real

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = serial

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Serial

MAXIMUM_SCALE = NULL

207Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

PostgreSQL Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Smallint

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1073741823

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Text

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 15

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Time

MAXIMUM_SCALE = 6

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4208

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 22

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time with time zone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Time with time zone

MAXIMUM_SCALE = 6

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 26

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Timestamp

MAXIMUM_SCALE = 6

209Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

PostgreSQL Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 33

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp with time zone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Timestamp with time zone

MAXIMUM_SCALE = 6

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10485760

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = XML 26

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 2009 (SQLXML)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = XML

MAXIMUM_SCALE = NULL

Progress OpenEdge Driver
The following table provides getTypeInfo() results for the Progress OpenEdge

®
databases supported by the

Progress OpenEdge driver. Refer to "Progress OpenEdge Driver" in the DataDirect Connect Series for JDBC
User’s Guide for more information.

26 The XML data type is supported in PostgreSQL versions 8.3 and higher.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4210

Chapter 5: getTypeInfo()

Table 28: getTypeInfo() for Progress OpenEdge

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BIGINT

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = BINARY

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 1

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -7 (BIT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = BIT

MAXIMUM_SCALE = 0

211Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Progress OpenEdge Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1000000000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = blob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGVARBINARY

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = character

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = CHAR

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1000000000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = clob

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGVARCHAR

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4212

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = double precision

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = DOUBLE

PRECISION MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = FLOAT

MAXIMUM_SCALE = NULL

213Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Progress OpenEdge Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = INTEGER

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = lvarbinary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGVARBINARY

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = lvarchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGVARCHAR

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4214

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 50

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = NUMERIC

MAXIMUM_SCALE = 50

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = REAL

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = SMALLINT

MAXIMUM_SCALE = 0

215Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Progress OpenEdge Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 12

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TIME

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 23

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TIMESTAMP

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp with time zone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = CHAR

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4216

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = tinyint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = TINYINT

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 31960

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = VARBINARY

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 31960

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = VARCHAR

MAXIMUM_SCALE = NULL

217Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Progress OpenEdge Driver

SQL Server Driver
The following table provides getTypeInfo() results for all Microsoft SQL Server and Microsoft Windows Azure
SQL Database databases supported by the SQL Server driver. Refer to "Microsoft SQL Server Driver" in the
DataDirect Connect Series for JDBC User’s Guide for more information.

Table 29: getTypeInfo() for SQL Server

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint27

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bigint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint identity27

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bigint identity

MAXIMUM_SCALE = 0

27 Supported only for Microsoft SQL Server 2000 and higher and Microsoft Windows Azure SQL Database.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4218

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8000

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = binary

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -7 (BIT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bit

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

219Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 3

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 23

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = datetime

MAXIMUM_SCALE = 3

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 27

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime2

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = datetime2

MAXIMUM_SCALE = 0

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4220

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 34

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetimeoffset

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR) or

93 (TIMESTAMP)28

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = datetimeoffset

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION =

28 (SQL Server 7),

38 (SQL Server 2000 and higher)29 ,

38 (Microsoft Windows Azure SQL Database)29

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal

MAXIMUM_SCALE =

28 (SQL Server 7),

38 (SQL Server 2000 and higher)29 ,

38 (Microsoft Windows Azure SQL Database)29

28 When FetchTSWTZasTimestamp=false, the data type that is returned by DATA_TYPE is VARCHAR; when
FetchTSWTZasTimestamp=true, the data type that is returned is TIMESTAMP.

29 Configurable server option for Microsoft SQL Server 2000 and higher and Microsoft Windows Azure SQL Database.

221Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION =

28 (SQL Server 7),

38 (SQL Server 2000 and higher)

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal() identity

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal() identity

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 53

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 6 (FLOAT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = image

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = image

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4222

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = int

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = int

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = int identity

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = int identity

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 4

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = money

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = $

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = money

MAXIMUM_SCALE = 4

223Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 4000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)30

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1073741823

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = ntext

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)31

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = ntext

MAXIMUM_SCALE = NULL

30 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -15 (NCHAR) (if using
Java SE 6 or higher) or 1 (CHAR) (if using another JVM).

31 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -16 (LONGNVARCHAR)
(if using Java SE 6 or higher) or -1 (LONGVARCHAR) (if using another JVM).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4224

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION =

28 (SQL Server 7),

38 (SQL Server 2000 and higher)32 ,

38 (Microsoft Windows Azure SQL Database)32

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = numeric

MAXIMUM_SCALE =

28 (SQL Server 7),

38 (SQL Server 2000 and higher)32 ,

38 (Microsoft Windows Azure SQL Database)32

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION =

28 (SQL Server 7.0),

38 (SQL Server 2000 and higher),

38 (Microsoft Windows Azure SQL Database)

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric() identity

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = numeric() identity

MAXIMUM_SCALE = 0

32 Configurable server option for Microsoft SQL Server 2000 and higher and Microsoft Windows Azure SQL Database.

225Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 4000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nvarchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)33

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nvarchar

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1073741823

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = nvarchar(max)34

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)35

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = nvarchar(max)

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 24

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = real

MAXIMUM_SCALE = NULL

33 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -9 (NVARCHAR) (if using
Java SE 6 or higher) or 12 (VARCHAR) (if using another JVM).

34 Supported only for Microsoft SQL Server 2005 and higher and Microsoft Windows Azure SQL Database.
35 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -16 (LONGNVARCHAR)

(if using Java SE 6 or higher) or -1 (LONGVARCHAR) (if using another JVM).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4226

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = smalldatetime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = smalldatetime

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint identity

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallint identity

MAXIMUM_SCALE = 0

227Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = 4

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallmoney

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = $

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallmoney

MAXIMUM_SCALE = 4

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 8000

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = sql_variant36

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = sql_variant

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 128

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = sysname

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = sysname

MAXIMUM_SCALE = NULL

36 Supported only for Microsoft SQL Server 2000 and higher and Microsoft Windows Azure SQL Database.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4228

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = text

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = time

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = timestamp

MAXIMUM_SCALE = NULL

229Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = tinyint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = tinyint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = tinyint identity

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = tinyint identity

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 36

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = uniqueidentifier

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 1(CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = uniqueidentifier

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4230

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8000

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = varbinary

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary(max)37

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = varbinary(max)

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = NULL

37 Supported only for Microsoft SQL Server 2005 and higher and Microsoft Windows Azure SQL Database.

231Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

SQL Server Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar(max)38

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar(max)

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1073741823

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = xml38

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR) or 2009
(SQLXML)39

FIXED_PREC_SCALE = false

LITERAL_PREFIX = N'

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = xml

MAXIMUM_SCALE = NULL

Sybase Driver
The following table provides getTypeInfo() results for all Sybase databases supported by the Sybase driver.
Refer to "Sybase Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

38 Supported only for Microsoft SQL Server 2005 and higher and Microsoft Windows Azure SQL Database.
39 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2009 (SQLXML) (if using

Java SE 6 or higher) or -1 (LONGVARCHAR) (if using another JVM). In addition, the XMLDescribeType property can override
driver mappings.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4232

Chapter 5: getTypeInfo()

Table 30: getTypeInfo() for Sybase

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint 40

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bigint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 6

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 26

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigdatetime 41

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = bigdatetime

MAXIMUM_SCALE = 6

40 Supported only for Sybase 15.0 and higher.
41 Supported only for Sybase 15.5 and higher.

233Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = 6

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 15

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigtime 42

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE =

92 (TIME),

93 (TIMESTAMP) 43

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = bigtime

MAXIMUM_SCALE = 6

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

255 (Sybase 11.x, 12.0) 44 ,

2048 (Sybase 12.5 and higher) 44

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = binary

MAXIMUM_SCALE = NULL

42 Supported only for Sybase 15.5 and higher.
43 When FetchTWFSasTime=true, this Sybase data type is mapped to the JDBC TIME data type. When FetchTWFSasTime=false,

this Sybase data type is mapped to the JDBC TIMESTAMP data type.
44 For Sybase 12.5.1 and higher, precision is determined by the server page size.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4234

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -7 (BIT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = bit

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

255 (Sybase 11.x, 12.0) 45 ,

2048 (Sybase 12.5 and higher) 45

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date 46

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = NULL

45 For Sybase 12.5.1 and higher, precision is determined by the server page size.
46 Supported only for Sybase 12.5.1 and higher.

235Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = 3

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 23

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = datetime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = datetime

MAXIMUM_SCALE = 3

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 38

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal

MAXIMUM_SCALE = 38

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 6 (FLOAT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4236

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = image

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = image

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = int

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = int

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 4

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = money

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = $

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = money

MAXIMUM_SCALE = 4

237Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 38

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = numeric

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision,scale

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = numeric

MAXIMUM_SCALE = 38

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = real

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 3

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 16

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = smalldatetime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = smalldatetime

MAXIMUM_SCALE = 3

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4238

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 4

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallmoney

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = $

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = smallmoney

MAXIMUM_SCALE = 4

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 30

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = sysname

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = sysname

MAXIMUM_SCALE = NULL

239Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = text

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 3

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 12

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time 47

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME) or 93 (TIMESTAMP) 48

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = time

MAXIMUM_SCALE = 3

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = timestamp

MAXIMUM_SCALE = NULL

47 Supported only for Sybase 12.5.1 and higher.
48 When FetchTWFSasTime=time, this Sybase data type is mapped to the JDBC TIME data type. When FetchTWFSasTime=false,

this Sybase data type is mapped to the JDBC TIMESTAMP data type.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4240

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 3

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = tinyint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = tinyint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 20

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = unsigned bigint 49

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = unsigned bigint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = unsigned int 49

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = unsigned int

MAXIMUM_SCALE = 0

49 Supported only for Sybase 15.0 and higher.

241Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 5

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = true

TYPE_NAME = unsigned smallint 49

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = unsigned smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =2048

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = unichar 50

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR) or -15 (NCHAR) 51

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = unichar

MAXIMUM_SCALE = NULL

50 Supported only for Sybase 12.5 and higher.
51 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -15 (NCHAR) (if using

Java SE 6 or higher) or 1 (CHAR) (if using another JVM).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4242

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 1

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = unitext 52

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -1 (LONGVARCHAR) or

2011 LONGNVARCHAR 53

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = unitext

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2048

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = univarchar 54

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR) or

-9 (NVARCHAR)55

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = univarchar

MAXIMUM_SCALE = NULL

52 Supported only for Sybase 15.0 and higher.
53 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: 2011 (LONGNVARCHAR)

(if using Java SE 6 or higher) or -1 (LONGVARCHAR) (if using another JVM).
54 Supported only for Sybase 12.5 and higher.
55 If JDBCBehavior=0, the value returned for DATA_TYPE depends on the JVM used by the application: -9 (NVARCHAR) (if using

Java SE 6 or higher) or 12 (VARCHAR) (if using another JVM).

243Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Sybase Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

255 (Sybase 11.x, 12.0) 56 ,

2048 (Sybase 12.5 and higher) 56

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varbinary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = 0x

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = varbinary

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION =

255 (Sybase 11.x, 12.0), 57

2048 (Sybase 12.5 and higher) 57

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = NULL

The Driver for Apache Hive
The following table provides getTypeInfo() results for all sources supported by The Driver for Apache Hive.
Refer to "The Driver for Apache Hive" in the DataDirect Connect Series for JDBC User’s Guide for more
information.

56 For Sybase 12.5.1 and higher, precision is determined by the server page size.
57 For Sybase 12.5.1 and higher, precision is determined by the server page size.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4244

Chapter 5: getTypeInfo()

Table 31: getTypeInfo() for The Driver for Apache Hive

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = bigint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = L

LOCAL_TYPE_NAME = bigint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 214748647

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = binary 58

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = binary

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = boolean

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 16 (BOOLEAN)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = boolean

MAXIMUM_SCALE = NULL

58 Supported only for HiveServer1.

245Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

The Driver for Apache Hive

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = char59

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = char

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date60

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = true

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = date

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 38

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = decimal61

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 3 (DECIMAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = decimal

MAXIMUM_SCALE = 38

59 Supported for Apache Hive 0.13 and higher.
60 Supported for Apache Hive 0.12 and higher.
61 For Apache Hive 0.13 and higher, supported as either a user-defined, variable precision data type or as a fixed precision data

type. For Apache Hive 0.11 and 0.12, supported as a fixed precision data type only.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4246

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 15

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = double

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = double

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 7

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = float

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = float

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = int

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = int

MAXIMUM_SCALE = 0

247Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

The Driver for Apache Hive

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = S

LOCAL_TYPE_NAME = smallint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = string62

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR) or -1
(LONGVARCHAR)63

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = string

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 29

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = timestamp

MAXIMUM_SCALE = 9

62 Maximum of 2 GB
63 If the StringDescribeType connection property is set to varchar (the default), the String data type maps to VARCHAR. If

StringDescribeType is set to longvarchar, String maps to LONGVARCHAR.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4248

Chapter 5: getTypeInfo()

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 3

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = tinyint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -6 (TINYINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = Y

LOCAL_TYPE_NAME = tinyint

MAXIMUM_SCALE = 0

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = varchar60

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = varchar

MAXIMUM_SCALE = 0

Greenplum Driver
The following table provides getTypeInfo() results for Greenplum databases supported by the driver. Refer to
"Greenplum Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

249Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Greenplum Driver

Table 32: getTypeInfo() for Greenplum

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Bigint

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bigserial

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -5 (BIGINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Bigserial

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 83886080

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit 64

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -2 (BINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bit

MAXIMUM_SCALE = NULL

64 Bit maps to -7 (BIT) when the length for the bit is 1. If the length is greater than 1, the driver maps the column to BINARY.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4250

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 83886080

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bit varying

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = -3 (VARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bit varying

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1

SEARCHABLE = 2

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = boolean

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 16 (BOOLEAN)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Boolean

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 2147483647

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = bytea

AUTO_INCREMENT = NULL

CASE_SENSITIVE = true

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Bytea

MAXIMUM_SCALE = NULL

251Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Greenplum Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10485760

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = character

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 1 (CHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Character

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10485760

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = character varying 65

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = max length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Character varying

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {d'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

65 Columns of this type will be described as VARCHAR when precision is 4000 or less. If precision is greater than 4000, columns
will be described as LONGVARCHAR.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4252

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 53

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = double precision

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Double precision

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = integer

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Integer

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 999

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1000

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = numeric

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 2 (NUMERIC)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Numeric

MAXIMUM_SCALE = 0

253Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Greenplum Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 2

PRECISION = 24

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = real

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision

DATA_TYPE = 7 (REAL)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Real

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = 10

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = serial

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 4 (INTEGER)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Serial

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 5

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = smallint

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 5 (SMALLINT)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = Smallint

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4254

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 1073741823

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = Text

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 15

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Time

MAXIMUM_SCALE = 6

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 22

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = time with time zone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {t'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Time with time zone

MAXIMUM_SCALE = 6

255Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Greenplum Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 26

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Timestamp

MAXIMUM_SCALE = 6

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 33

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = timestamp with time zone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = fractional_seconds_precision

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = {ts'

LITERAL_SUFFIX = '}

LOCAL_TYPE_NAME = Timestamp with time zone

MAXIMUM_SCALE = 6

Salesforce Driver
The following table provides getTypeInfo() results for all sources supported by the Salesforce driver. Refer to
"Salesforce Driver" in the DataDirect Connect Series for JDBC User’s Guide for more information.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4256

Chapter 5: getTypeInfo()

Table 33: getTypeInfo() for Salesforce

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = AnyType

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = ANYTYPE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 30

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = AutoNumber

AUTO_INCREMENT = true

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = AUTONUMBER

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 5242880

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Binary

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = -4 (LONGVARBINARY)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = BINARY

MAXIMUM_SCALE = 0

257Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Salesforce Driver

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 1

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = CheckBox

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 16 (BOOLEAN)

FIXED_PREC_SCALE = false

LITERAL_PREFIX =

LITERAL_SUFFIX =

LOCAL_TYPE_NAME = CHECKBOX

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = ComboBox

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = COMBOBOX

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 18

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = Currency

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX =

LITERAL_SUFFIX =

LOCAL_TYPE_NAME = CURRENCY

MAXIMUM_SCALE = 18

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4258

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = DataCategoryGroupReference

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 10

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Date

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 91 (DATE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 19

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = DateTime

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 93 (TIMESTAMP)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = DATETIME

MAXIMUM_SCALE = 0

259Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Salesforce Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 80

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Email

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = EMAIL

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = HTML

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = HTML

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 0

NUM_PREC_RADIX = NULL

PRECISION = 18

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = ID

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = ID

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4260

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 32000

SEARCHABLE = 0

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = LongTextArea

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = -1 (LONGVARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = LONGTEXTAREA

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = MultiSelectPickList

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = MULTISELECTPICKLIST

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 18

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = Number

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = NULL

LITERAL_SUFFIX = NULL

LOCAL_TYPE_NAME = NUMBER

MAXIMUM_SCALE = 18

261Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Salesforce Driver

MINIMUM_SCALE = 0

NULLABLE = 1

NUM_PREC_RADIX = 10

PRECISION = 18

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = false

TYPE_NAME = Percent

AUTO_INCREMENT = false

CASE_SENSITIVE = false

CREATE_PARAMS = precision, scale

DATA_TYPE = 8 (DOUBLE)

FIXED_PREC_SCALE = false

LITERAL_PREFIX =

LITERAL_SUFFIX =

LOCAL_TYPE_NAME = PERCENT

MAXIMUM_SCALE = 18

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 40

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Phone

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = PHONE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = PickList

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = PICKLIST

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4262

Chapter 5: getTypeInfo()

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 18

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Reference

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = REFERENCE

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Text

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = length

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TEXT

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = TextArea

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TEXTAREA

MAXIMUM_SCALE = NULL

263Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Salesforce Driver

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 8

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = Time

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 92 (TIME)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = TIME

MAXIMUM_SCALE = NULL

MINIMUM_SCALE = NULL

NULLABLE = 1

NUM_PREC_RADIX = NULL

PRECISION = 255

SEARCHABLE = 3

SQL_DATA_TYPE = NULL

SQL_DATETIME_SUB = NULL

UNSIGNED_ATTRIBUTE = NULL

TYPE_NAME = URL

AUTO_INCREMENT = NULL

CASE_SENSITIVE = false

CREATE_PARAMS = NULL

DATA_TYPE = 12 (VARCHAR)

FIXED_PREC_SCALE = false

LITERAL_PREFIX = '

LITERAL_SUFFIX = '

LOCAL_TYPE_NAME = URL

MAXIMUM_SCALE = NULL

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4264

Chapter 5: getTypeInfo()

6
Designing JDBC Applications for
Performance Optimization

Developing performance-oriented JDBC applications is not easy. JDBC drivers do not throw exceptions to tell
you when your code is running too slow. This chapter presents some general guidelines for improving JDBC
application performance that have been compiled by examining the JDBC implementations of numerous
shipping JDBC applications. These guidelines include:

• Use DatabaseMetaData methods appropriately

• Return only required data

• Select functions that optimize performance

• Manage connections and updates

Following these general guidelines can help you solve some common JDBC system performance problems,
such as those listed in the following table.

See guidelines in…SolutionProblem

Using Database Metadata Methods on
page 266

Reduce network traffic.Network communication is slow.

Using Database Metadata Methods on
page 266

Selecting JDBC Objects and Methods
on page 270

Simplify queries.Evaluation of complex SQL queries on
the database server is slow and can
reduce concurrency.

265Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

See guidelines in…SolutionProblem

Returning Data on page 268

Selecting JDBC Objects and Methods
on page 270

Optimize application-to-driver
interaction.

Excessive calls from the application to
the driver slow performance.

Managing Connections and Updates
on page 273

Limit disk I/O.Disk I/O is slow.

In addition, most JDBC drivers provide options that improve performance, often with a trade-off in functionality.
If your application is not affected by functionality that is modified by setting a particular option, significant
performance improvements can be realized.

Note: The section describes functionality across a spectrum of data stores. In some cases, the functionality
described may not apply to the driver or data store you are using. In addition, examples are drawn from a
variety of drivers and data stores.

For details, see the following topics:

• Using Database Metadata Methods

• Returning Data

• Selecting JDBC Objects and Methods

• Managing Connections and Updates

Using Database Metadata Methods
Because database metadata methods that generate ResultSet objects are slow compared to other JDBC
methods, their frequent use can impair system performance. The guidelines in this section will help you optimize
system performance when selecting and using database metadata.

Minimizing the Use of Database Metadata Methods
Compared to other JDBC methods, database metadata methods that generate ResultSet objects are relatively
slow. Applications should cache information returned from result sets that generate database metadata methods
so that multiple executions are not needed.

Although almost no JDBC application can be written without database metadata methods, you can improve
system performance by minimizing their use. To return all result column information mandated by the JDBC
specification, a JDBC driver may have to perform complex queries or multiple queries to return the necessary
result set for a single call to a database metadata method. These particular elements of the SQL language are
performance-expensive.

Applications should cache information from database metadata methods. For example, call getTypeInfo() once
in the application and cache the elements of the result set that your application depends on. It is unlikely that
any application uses all elements of the result set generated by a database metadata method, so the cache
of information should not be difficult to maintain.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4266

Chapter 6: Designing JDBC Applications for Performance Optimization

Avoiding Search Patterns
Using null arguments or search patterns in database metadata methods results in generating time-consuming
queries. In addition, network traffic potentially increases due to unwanted results. Always supply as many
non-null arguments as possible to result sets that generate database metadata methods.

Because database metadata methods are slow, invoke them in your applications as efficiently as possible.
Many applications pass the fewest non-null arguments necessary for the function to return success. For example:

ResultSet WSrs = WSdbmd.getTables(null, null, "WSTable", null);

In this example, an application uses the getTables() method to determine if the WSTable table exists. A JDBC
driver interprets the request as: return all tables, views, system tables, synonyms, temporary tables, and aliases
named "WSTable" that exist in any database schema inside the database catalog.

In contrast, the following request provides non-null arguments as shown:

String[] tableTypes = {"TABLE"};
WSdbmd.getTables("cat1", "johng", "WSTable", "tableTypes");

Clearly, a JDBC driver can process the second request more efficiently than it can process the first request.

Sometimes, little information is known about the object for which you are requesting information. Any information
that the application can send the driver when calling database metadata methods can result in improved
performance and reliability.

Using a Dummy Query to Determine Table Characteristics
Avoid using the getColumns() method to determine characteristics about a database table. Instead, use a
dummy query with getMetadata().

Consider an application that allows the user to choose the columns to be selected. Should the application use
getColumns() to return information about the columns to the user or instead prepare a dummy query and call
getMetadata()?

Case 1: GetColumns() Method
ResultSet WSrc = WSc.getColumns(... "UnknownTable" ...);
// This call to getColumns will generate a query to
// the system catalogs... possibly a join
// which must be prepared, executed, and produce
// a result set
. . .
WSrc.next();
string Cname = getString(4);
. . .
// user must return N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: GetMetadata() Method
// prepare dummy query
PreparedStatement WSps = WSc.prepareStatement

("SELECT * FROM UnknownTable WHERE 1 = 0");
// query is never executed on the server - only prepared
ResultSetMetaData WSsmd=WSps.getMetaData();
int numcols = WSrsmd.getColumnCount();
...

267Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using Database Metadata Methods

int ctype = WSrsmd.getColumnType(n)
...
// result column information has now been obtained
// Note we also know the column ordering within the
// table! This information cannot be
// assumed from the getColumns example.

In both cases, a query is sent to the server. However, in Case 1, the potentially complex query must be prepared
and executed, result description information must be formulated, and a result set of rows must be sent to the
client. In Case 2, we prepare a simple query where we only return result set information. Clearly, Case 2 is the
better performing model.

To somewhat complicate this discussion, let us consider a DBMS server that does not natively support preparing
a SQL statement. The performance of Case 1 does not change but the performance of Case 2 improves slightly
because the dummy query must be evaluated in addition to being prepared. Because the Where clause of the
query always evaluates to FALSE, the query generates no result rows and should execute without accessing
table data. For this situation, Case 2 still outperforms Case 1.

In summary, always use result set metadata to return table column information, such as column names, column
data types, and column precision and scale. Only use the getColumns() method when the requested information
cannot be obtained from result set metadata (for example, using the table column default values).

Returning Data
To return data efficiently, return only the data that you need and choose the most efficient method of doing so.
The guidelines in this section will help you optimize system performance when retrieving data with JDBC
applications.

Returning Long Data
Because retrieving long data across a network is slow and resource intensive, applications should not request
long data unless it is necessary.

Most users do not want to see long data. If the user does want to see these result items, then the application
can query the database again, specifying only the long columns in the Select list. This method allows the
average user to return the result set without having to pay a high performance penalty for network traffic.

Although the best method is to exclude long data from the Select list, some applications do not formulate the
Select list before sending the query to the JDBC driver (that is, some applications SELECT * FROM
table_name ...). If the Select list contains long data, most drivers are forced to return that long data at fetch
time, even if the application does not ask for the long data in the result set. When possible, the designer should
attempt to implement a method that does not return all columns of the table.

For example, consider the following code:

ResultSet rs = stmt.executeQuery(
"SELECT * FROM Employees WHERE SSID = '999-99-2222'");

rs.next();
string name = rs.getString(1);

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4268

Chapter 6: Designing JDBC Applications for Performance Optimization

Remember that a JDBC driver cannot interpret an application's final intention. When a query is executed, the
driver has no way to know which result columns an application will use. A driver anticipates that an application
can request any of the result columns that are returned. When the JDBC driver processes the rs.next request,
it will probably return at least one, if not more, result rows from the database server across the network. In this
case, a result row contains all the column values for each row, including an employee photograph if the
Employees table contains such a column. If you limit the Select list to contain only the employee name column,
it results in decreased network traffic and a faster performing query at runtime. For example:

ResultSet rs = stmt.executeQuery(
"SELECT name FROM Employees WHERE SSID = '999-99-2222'");

rs.next();
string name = rs.getString(1);

Additionally, although the getClob() and getBlob() methods allow the application to control how long data is
returned in the application, the designer must realize that in many cases, the JDBC driver emulates these
methods due to the lack of true Large Object (LOB) locator support in the DBMS. In such cases, the driver
must return all the long data across the network before exposing the getClob() and getBlob() methods.

Reducing the Size of Returned Data
Sometimes long data must be returned. When this is the case, remember that most users do not want to see
100 KB, or more, of text on the screen.

To reduce network traffic and improve performance, you can reduce the size of any data being returned to
some manageable limit by calling setMaxRows(), setMaxFieldSize(), and the driver-specific setFetchSize().
Another method of reducing the size of the data being returned is to decrease the column size.

In addition, be careful to return only the rows you need. If you return five columns when you only need two
columns, performance is decreased, especially if the unnecessary rows include long data.

Choosing the Right Data Type
Retrieving and sending certain data types can be expensive. When you design a schema, select the data type
that can be processed most efficiently. For example, integer data is processed faster than floating-point data.
Floating-point data is defined according to internal database-specific formats, usually in a compressed format.
The data must be decompressed and converted into a different format so that it can be processed by the
database wire protocol.

Retrieving Result Sets
Most JDBC drivers cannot implement scrollable cursors because of limited support for scrollable cursors in the
database system. Unless you are certain that the database supports using a scrollable result set, rs, for example,
do not call rs.last and rs.getRow() methods to find out how many rows the result set contains. For JDBC drivers
that emulate scrollable cursors, calling rs.last results in the driver retrieving all results across the network to
reach the last row. Instead, you can either count the rows by iterating through the result set or get the number
of rows by submitting a query with a Count column in the Select clause.

In general, do not write code that relies on the number of result rows from a query because drivers must fetch
all rows in a result set to know how many rows the query will return.

269Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Returning Data

Selecting JDBC Objects and Methods
The guidelines in this section will help you to select which JDBC objects and methods will give you the best
performance.

Using Parameter Markers as Arguments to Stored Procedures
When calling stored procedures, always use parameter markers for argument markers instead of using literal
arguments. JDBC drivers can call stored procedures on the database server either by executing the procedure
as a SQL query or by optimizing the execution by invoking a Remote Procedure Call (RPC) directly on the
database server. When you execute a stored procedure as a SQL query, the database server parses the
statement, validates the argument types, and converts the arguments into the correct data types.

Remember that SQL is always sent to the database server as a character string, for example, {call
getCustName(12345)}. In this case, even though the application programmer may have assumed that the
only argument to getCustName() was an integer, the argument is actually passed inside a character string to
the server. The database server parses the SQL query, isolates the single argument value 12345, and converts
the string 12345 into an integer value before executing the procedure as a SQL language event.

By invoking a RPC on the database server, the overhead of using a SQL character string is avoided. Instead,
the JDBC driver constructs a network packet that contains the parameters in their native data type formats and
executes the procedure remotely.

Case 1: Not Using a Server-Side RPC
In this example, the stored procedure getCustName() cannot be optimized to use a server-side RPC. The
database server must treat the SQL request as a normal language event, which includes parsing the statement,
validating the argument types, and converting the arguments into the correct data types before executing the
procedure.

CallableStatement cstmt = conn.prepareCall("call getCustName(12345)");
ResultSet rs = cstmt.executeQuery();

Case 2: Using a Server-Side RPC
In this example, the stored procedure getCustName() can be optimized to use a server-side RPC. Because
the application avoids literal arguments and calls the procedure by specifying all arguments as parameters,
the JDBC driver can optimize the execution by invoking the stored procedure directly on the database as an
RPC. The SQL language processing on the database server is avoided and execution time is greatly improved.

CallableStatement cstmt = conn.prepareCall("call getCustName(?)}");
cstmt.setLong(1,12345);
ResultSet rs = cstmt.executeQuery();

Using the StatementObject Instead of the PreparedStatementObject
JDBC drivers are optimized based on the perceived use of the functions that are being executed. Choose
between the PreparedStatement object and the Statement object depending on how you plan to use the object.
The Statement object is optimized for a single execution of a SQL statement. In contrast, the PreparedStatement
object is optimized for SQL statements to be executed two or more times.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4270

Chapter 6: Designing JDBC Applications for Performance Optimization

The overhead for the initial execution of a PreparedStatement object is high. The advantage comes with
subsequent executions of the SQL statement. For example, suppose we are preparing and executing a query
that returns employee information based on an ID. Using a PreparedStatement object, a JDBC driver would
process the prepare request by making a network request to the database server to parse and optimize the
query. The execute results in another network request. If the application will only make this request once during
its life span, using a Statement object instead of a PreparedStatement object results in only a single network
roundtrip to the database server. Reducing network communication typically provides the most performance
gains.

This guideline is complicated by the use of prepared statement pooling because the scope of execution is
longer. When using prepared statement pooling, if a query will only be executed once, use the Statement
object. If a query will be executed infrequently, but may be executed again during the life of a statement pool
inside a connection pool, use a PreparedStatement object. Under similar circumstances without statement
pooling, use the Statement object.

Using Batches Instead of Prepared Statements
Updating large amounts of data typically is done by preparing an Insert statement and executing that statement
multiple times, resulting in numerous network roundtrips. To reduce the number of JDBC calls and improve
performance, you can send multiple queries to the database at a time using the addBatch method of the
PreparedStatement object. For example, let us compare the following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times
PreparedStatement ps = conn.prepareStatement(

"INSERT INTO employees VALUES (?, ?, ?)");
for (n = 0; n < 100; n++) {

ps.setString(name[n]);
ps.setLong(id[n]);
ps.setInt(salary[n]);
ps.executeUpdate();

}

Case 2: Using a Batch
PreparedStatement ps = conn.prepareStatement(

"INSERT INTO employees VALUES (?, ?, ?)");
for (n = 0; n < 100; n++) {

ps.setString(name[n]);
ps.setLong(id[n]);
ps.setInt(salary[n]);
ps.addBatch();

}
ps.executeBatch();

In Case 1, a prepared statement is used to execute an Insert statement multiple times. In this case, 101 network
roundtrips are required to perform 100 Insert operations: one roundtrip to prepare the statement and 100
additional roundtrips to execute its iterations. When the addBatch method is used to consolidate 100 Insert
operations, as demonstrated in Case 2, only two network roundtrips are required—one to prepare the statement
and another to execute the batch. Although more database CPU cycles are involved by using batches,
performance is gained through the reduction of network roundtrips. Remember that the biggest gain in
performance is realized by reducing network communication between the JDBC driver and the database server.

271Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Selecting JDBC Objects and Methods

Choosing the Right Cursor
Choosing the appropriate type of cursor allows maximum application flexibility. This section summarizes the
performance issues of three types of cursors: forward-only, insensitive, and sensitive.

A forward-only cursor provides excellent performance for sequential reads of all rows in a table. For retrieving
table data, there is no faster way to return result rows than using a forward-only cursor; however, forward-only
cursors cannot be used when the rows to be returned are not sequential.

Insensitive cursors are ideal for applications that require high levels of concurrency on the database server
and require the ability to scroll forwards and backwards through result sets. The first request to an insensitive
cursor fetches all the rows and stores them on the client. In most cases, the first request to an insensitive cursor
fetches all the rows and stores them on the client. If a driver uses "lazy" fetching (fetch-on-demand), the first
request may include many rows, if not all rows.The initial request is slow, especially when long data is returned.
Subsequent requests do not require any network traffic (or, when a driver uses "lazy" fetching, requires limited
network traffic) and are processed quickly.

Because the first request is processed slowly, insensitive cursors should not be used for a single request of
one row. Developers should also avoid using insensitive cursors when long data or large result sets are returned
because memory can be exhausted. Some insensitive cursor implementations cache the data in a temporary
table on the database server and avoid the performance issue, but most cache the information local to the
application.

Sensitive cursors, or keyset-driven cursors, use identifiers such as a ROWID that already exist in the database.
When you scroll through the result set, the data for these identifiers is returned. Because each request generates
network traffic, performance can be very slow. However, returning non-sequential rows does not further affect
performance.

To illustrate this point further, consider an application that normally returns 1000 rows to an application. At
execute time, or when the first row is requested, a JDBC driver does not execute the Select statement that
was provided by the application. Instead, the JDBC driver replaces the Select list of the query with a key
identifier, for example, ROWID. This modified query is then executed by the driver and all 1000 key values are
returned by the database server and cached for use by the driver. Each request from the application for a result
row directs the JDBC driver to look up the key value for the appropriate row in its local cache, construct an
optimized query that contains a Where clause similar to WHERE ROWID=?, execute the modified query, and
return the single result row from the server.

Sensitive cursors are the preferred scrollable cursor model for dynamic situations when the application cannot
afford to buffer the data associated with an insensitive cursor.

Using get Methods Effectively
JDBC provides a variety of methods to return data from a result set (for example, getInt(), getString(), and
getObject()). The getObject() method is the most generic and provides the worst performance when the
non-default mappings are specified because the JDBC driver must perform extra processing to determine the
type of the value being returned and generate the appropriate mapping. Always use the specific method for
the data type.

To further improve performance, provide the column number of the column being returned, for example,
getString(1), getLong(2), and getInt(3), instead of the column name. If the column names are not
specified, network traffic is unaffected, but costly conversions and lookups increase. For example, suppose
you use:

getString("foo")...

The JDBC driver may need to convert foo to uppercase and then compare foo with all columns in the column
list, which is costly. If the driver is able to go directly to result column 23, a large amount of processing is saved.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4272

Chapter 6: Designing JDBC Applications for Performance Optimization

For example, suppose you have a result set that has 15 columns and 100 rows, and the column names are
not included in the result set. You are interested in only three columns: EMPLOYEENAME (string),
EMPLOYEENUMBER (long integer), and SALARY (integer). If you specify getString("EmployeeName"),
getLong("EmployeeNumber"), and getInt("Salary"), each column name must be converted to the
appropriate case of the columns in the database metadata and lookups would increase considerably.
Performance improves significantly if you specify getString(1), getLong(2), and getInt(15).

Retrieving Auto Generated Keys
Many databases have hidden columns (pseudo-columns) that represent a unique key for each row in a table.
Typically, using these types of columns in a query is the fastest way to access a row because the
pseudo-columns usually represent the physical disk address of the data. Prior to JDBC 3.0, an application
could only return the value of the pseudo-columns by executing a Select statement immediately after inserting
the data. For example:

//insert row
int rowcount = stmt.executeUpdate (

"INSERT INTO LocalGeniusList (name)
VALUES ('Karen')");

// now get the disk address – rowid -
// for the newly inserted row
ResultSet rs = stmt.executeQuery (

"SELECT rowid FROM LocalGeniusList
WHERE name = 'Karen'");

Retrieving pseudo-columns this way has two major flaws. First, retrieving the pseudo-column requires a separate
query to be sent over the network and executed on the server. Second, because there may not be a primary
key over the table, the search condition of the query may be unable to uniquely identify the row. In the latter
case, multiple pseudo-column values can be returned, and the application may not be able to determine which
value is actually the value for the most recently inserted row.

An optional feature of the JDBC 3.0 specification is the ability to return auto-generated key information for a
row when the row is inserted into a table. For example:

int rowcount = stmt.executeUpdate(
"INSERT INTO LocalGeniusList(name) VALUES('Karen')",

// insert row AND return key
Statement.RETURN_GENERATED_KEYS);
ResultSet rs = stmt.getGeneratedKeys();
// key is automatically available

Now, the application contains a value that can be used in a search condition to provide the fastest access to
the row and a value that uniquely identifies the row, even when a primary key doesn't exist on the table.

The ability to return keys provides flexibility to the JDBC developer and creates performance boosts when
accessing data.

Managing Connections and Updates
The guidelines in this section will help you to manage connections and updates to improve system performance
for your JDBC applications.

273Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Managing Connections and Updates

Managing Connections
Connection management is important to application performance. Optimize your application by connecting
once and using multiple Statement objects, instead of performing multiple connections. Avoid connecting to a
data source after establishing an initial connection.

Although gathering driver information at connect time is a good practice, it is often more efficient to gather it in
one step rather than two steps. For example, some applications establish a connection and then call a method
in a separate component that reattaches and gathers information about the driver. Applications that are designed
as separate entities should pass the established connection object to the data collection routine instead of
establishing a second connection.

Another bad practice is to connect and disconnect several times throughout your application to perform SQL
statements. Connection objects can have multiple Statement objects associated with them. Statement objects,
which are defined to be memory storage for information about SQL statements, can manage multiple SQL
statements.

You can improve performance significantly with connection pooling, especially for applications that connect
over a network or through the World Wide Web. Connection pooling lets you reuse connections. Closing
connections does not close the physical connection to the database. When an application requests a connection,
an active connection is reused, thus avoiding the network round trips needed to create a new connection.

Typically, you can configure a connection pool to provide scalability for connections. The goal is to maintain a
reasonable connection pool size while ensuring that each user who needs a connection has one available
within an acceptable response time. To achieve this goal, you can configure the minimum and maximum number
of connections that are in the pool at any given time, and how long idle connections stay in the pool. In addition,
to help minimize the number of connections required in a connection pool, you can switch the user associated
with a connection to another user, a process known as reauthentication. Not all databases support
reauthentication.

In addition to connection pooling tuning options, JDBC also specifies semantics for providing a prepared
statement pool. Similar to connection pooling, a prepared statement pool caches PreparedStatement objects
so that they can be re-used from a cache without application intervention. For example, an application may
create a PreparedStatement object similar to the following SQL statement:

SELECT name, address, dept, salary FROM personnel
WHERE empid = ? or name = ? or address = ?

When the PreparedStatement object is created, the SQL query is parsed for semantic validation and a query
optimization plan is produced. The process of creating a prepared statement can be extremely expensive in
terms of performance with some database systems. Once the prepared statement is closed, a JDBC
3.0-compliant driver places the prepared statement into a local cache instead of discarding it. If the application
later attempts to create a prepared statement with the same SQL query, a common occurrence in many
applications, the driver can simply retrieve the associated statement from the local cache instead of performing
a network roundtrip to the server and an expensive database validation.

Connection and statement handling should be addressed before implementation. Thoughtfully handling
connections and statements improves application performance and maintainability.

Managing Commits in Transactions
Committing transactions is slow because of the amount of disk I/O and potentially network round trips that are
required. Always turn off Autocommit by using Connection.setAutoCommit(false).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4274

Chapter 6: Designing JDBC Applications for Performance Optimization

What does a commit actually involve? The database server must flush back to disk every data page that
contains updated or new data. This is usually a sequential write to a journal file, but nevertheless, it involves
disk I/O. By default, Autocommit is on when connecting to a data source, and Autocommit mode usually impairs
performance because of the significant amount of disk I/O needed to commit every operation.

Furthermore, most database servers do not provide a native Autocommit mode. For this type of server, the
JDBC driver must explicitly issue a COMMIT statement and a BEGIN TRANSACTION for every operation sent
to the server. In addition to the large amount of disk I/O required to support Autocommit mode, a performance
penalty is paid for up to three network requests for every statement issued by an application.

Although using transactions can help application performance, do not take this tip too far. Leaving transactions
active can reduce throughput by holding locks on rows for longer than necessary, preventing other users from
accessing the rows. Commit transactions in intervals that allow maximum concurrency.

Choosing the Right Transaction Model
Many systems support distributed transactions; that is, transactions that span multiple connections. Distributed
transactions are at least four times slower than normal transactions due to the logging and network round trips
necessary to communicate between all the components involved in the distributed transaction (the JDBC driver,
transaction monitor, and DBMS). Unless distributed transactions are required, avoid using them. Instead, use
local transactions when possible. Many Java application servers provide a default transaction behavior that
uses distributed transactions.

For the best system performance, design the application to run using a single Connection object.

Using updateXXX Methods
Although programmatic updates do not apply to all types of applications, developers should attempt to use
programmatic updates and deletes. Using the updateXXX methods of the ResultSet object allows the developer
to update data without building a complex SQL statement. Instead, the developer simply supplies the column
in the result set that is to be updated and the data that is to be changed. Then, before moving the cursor from
the row in the result set, the updateRow() method must be called to update the database as well.

In the following code fragment, the value of the Age column of the ResultSet object rs is returned using the
getInt() method, and the updateInt() method is used to update the column with an int value of 25. The
updateRow() method is called to update the row in the database with the modified value.

int n = rs.getInt("Age");
// n contains value of Age column in the resultset rs
...
rs.updateInt("Age", 25);
rs.updateRow();

In addition to making the application more easily maintainable, programmatic updates usually result in improved
performance. Because the database server is already positioned on the row for the Select statement in process,
performance-expensive operations to locate the row that needs to be changed are unnecessary. If the row
must be located, the server usually has an internal pointer to the row available (for example, ROWID).

Using getBestRowIdentifier
Use getBestRowIdentifier() to determine the optimal set of columns to use in the Where clause for updating
data. Pseudo-columns often provide the fastest access to the data, and these columns can only be determined
by using getBestRowIdentifier().

275Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Managing Connections and Updates

Some applications cannot be designed to take advantage of positioned updates and deletes. Some applications
formulate the Where clause by calling getPrimaryKeys() to use all searchable result columns or by calling
getIndexInfo() to find columns that may be part of a unique index. These methods usually work, but can result
in fairly complex queries.

Consider the following example:

ResultSet WSrs = WSs.executeQuery
("SELECT first_name, last_name, ssn, address, city, state, zip FROM emp");

// fetchdata
...
WSs.executeQuery (

"UPDATE emp SET address = ?
WHERE first_name = ? AND last_name = ? AND ssn = ?
AND address = ? AND city = ? AND state = ? AND zip = ?");

// fairly complex query

Applications should call getBestRowIdentifier() to return the optimal set of columns (possibly a pseudo-column)
that identifies a specific record. Many databases support special columns that are not explicitly defined by the
user in the table definition, but are "hidden" columns of every table (for example, ROWID and TID). These
pseudo-columns generally provide the fastest access to the data because they typically are pointers to the
exact location of the record. Because pseudo-columns are not part of the explicit table definition, they are not
returned from getColumns(). To determine if pseudo-columns exist, call getBestRowIdentifier().

Consider the previous example again:

...
ResultSet WSrowid = getBestRowIdentifier()

(... "emp", ...);
...
WSs.executeUpdate("UPDATE EMP SET ADDRESS = ? WHERE ROWID = ?");
// fastest access to the data!

If your data source does not contain special pseudo-columns, the result set of getBestRowIdentifier() consists
of the columns of the most optimal unique index on the specified table (if a unique index exists). Therefore,
your application does not need to call getIndexInfo() to find the smallest unique index.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4276

Chapter 6: Designing JDBC Applications for Performance Optimization

7
SQL Escape Sequences for JDBC

Language features, such as outer joins and scalar function calls, are commonly implemented by database
systems. The syntax for these features is often database-specific, even when a standard syntax has been
defined. JDBC defines escape sequences that contain the standard syntax for the following language features:

• Date, time, and timestamp literals

• Scalar functions such as numeric, string, and data type conversion functions

• Outer joins

• Escape characters for wildcards used in LIKE clauses

• Procedure calls

The escape sequence used by JDBC is:

{extension}

The escape sequence is recognized and parsed by the drivers, which replaces the escape sequences with
data store-specific grammar.

For details, see the following topics:

• Date, Time, and Timestamp Escape Sequences

• Scalar Functions

• Outer Join Escape Sequences

• LIKE Escape Character Sequence for Wildcards

• Procedure Call Escape Sequences

277Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Date, Time, and Timestamp Escape Sequences
The escape sequence for date, time, and timestamp literals is:

{literal-type 'value'}

where:

literal-type

is one of the following:

Value FormatDescriptionliteral-type

yyyy-mm-ddDated

hh:mm:ss []Timet

yyyy-mm-dd hh:mm:ss[.f...]Timestampts

Example:

UPDATE Orders SET OpenDate={d '1995-01-15'} WHERE OrderID=1023

Scalar Functions
You can use scalar functions in SQL statements with the following syntax:

{fn scalar-function}

where:

scalar-function

is a scalar function supported by the drivers, as listed in the following table.

Example:

SELECT id, name FROM emp WHERE name LIKE {fn UCASE('Smith')}

Table 34: Supported Scalar Functions

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

DB2
COALESCECURDATEABS or

ABSVAL
ASCII

DEREFCURTIMEBLOB
ACOSCHAR DLCOMMENTDATE
ASINCHR DLLINKTYPEDAY
ATANCLOB DLURLCOMPLETEDAYNAME

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4278

Chapter 7: SQL Escape Sequences for JDBC

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

ATANHCONCAT DLURLPATHDAYOFWEEK

ATAN2DAYNAMEDBCLOB DLURLPATHONLYDAYOFYEAR

BIGINTDECFLOAT_FORMAT DLURLSCHEMEDAYS

CEILING or
CEIL

DIFFERENCE DLURLSERVERHOUR

GRAPHIC DLVALUEJULIAN_DAY
COSHEX EVENT_MON_STATEMICROSECOND
COSHINITCAPINSERT GENERATE_UNIQUEMIDNIGHT_SECONDS
COTINSTR NODENUMBERMINUTE
DECIMALLCASE or LOWER NULLIFMONTH
DEGREESLCASE 66 PARTITIONMONTHNAME
DIGITSLEFT RAISE_ERRORNOW
DOUBLELENGTH TABLE_NAMEQUARTER
EXPLOCATE TABLE_SCHEMASECOND
FLOATLOCATE_IN_STRING TRANSLATETIME
FLOORLONG_VARCHAR TYPE_IDTIMESTAMP
INTEGERLONG_VARGRAPHIC TYPE_NAMETIMESTAMP_ISO
LNLPAD TYPE_SCHEMATIMESTAMPDIFF
LOGLTRIM VALUEWEEK
LOG10LTRIM YEAR
MODMONTHNAME
POWERPOSSTR
RADIANSREPEAT
RANDREPLACE
REALRIGHT
ROUNDRPADRTRIM
SIGNRTRIM
SINRTRIM
SINHSOUNDEX
SMALLINTSPACE
SQRTSUBSTR
TANTO_CLOB
TANHTO_NUMBER
TRUNCATETRUNCATE or TRUNC

UCASE or UPPER

66 SYSFUN schema.

279Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Scalar Functions

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

VARCHAR

VARGRAPHIC

Informix
DATABASECURDATEABSCONCAT

CURTIMEACOSLEFT USER

DAYOFMONTHASINLENGTH

DAYOFWEEKATANLTRIM

MONTHATAN2REPLACE

NOWCOSRTRIM

TIMESTAMPADDCOTSUBSTRING

TIMESTAMPDIFFEXP

FLOOR YEAR

LOG

LOG10

MOD

PI

POWER

ROUND

SIN

SQRT

TAN

TRUNCATE

MySQL
DATABASECURDATEABSAASCII

IFNULLCURRENT_DATECOSCHAR

CURRENT_TIMEASINCONCAT USER

CURRENT_TIMESTAMPATANINSERT

CURTIMEATAN2LCASE

DAYNAMECEILINGLEFT

DAYOFMONTHCOSLENGTH

DAYOFWEEKCOTLOCATE

DAYOFYEARDEGREESLOCATE_2

EXTRACTEXPLTRIM

HOURFLOORREPEAT

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4280

Chapter 7: SQL Escape Sequences for JDBC

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

MINUTELOGREPLACE

MONTHLOG10RIGHT

MONTHNAMEMODRTRIM

NOWPISOUNDEX

QUARTERPOWERSPACE

SECONDRADIANSSUBSTRING

TIMESTAMPADDRANDUCASE

TIMESTAMPDIFFROUND

WEEKSIGN

SIN YEAR

SQRT

TAN

TRUNCATE

Oracle
IFNULLCURDATEABSASCII

DAYNAMEACOSBIT_LENGTH USER

DAYOFMONTHASINCHAR

DAYOFWEEKATANCONCAT

DAYOFYEARATAN2INSERT

HOURCEILINGLCASE

MINUTECOSLEFT

MONTHCOTLENGTH

MONTHNAMEEXPLOCATE

NOWFLOORLOCATE2

QUARTERLOGLTRIM

SECONDLOG10OCTET_LENGTH

WEEKMODREPEAT

PIREPLACE YEAR

POWERRIGHT

ROUNDRTRIM

SIGNSOUNDEX

SINSPACE

SQRTSUBSTRING

TANUCASE

TRUNCATE

281Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Scalar Functions

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

PostgreSQL
USERNAMECURDATEABSASCII

DBNAMECURRENT_DATEACOSBIT_LENGTH

CURRENT_TIMEASINCHAR IFNULL

CURRENT_TIMESTAMPATANCHAR_LENGTH

CURTIMEATAN2CHARACTER_LENGTH

EXTRACTCEILINGCONCAT

COSLCASE NOW

COTLENGTH

DEGREESLEFT 67

EXPLOCATE

FLOORLTRIM

LOGOCTET_LENGTH

LOG10POSITION

MODREPEAT

PIREPLACE

POWERRIGHT

RADIANSRTRIM

RANDSUBSTRING

ROUNDUCASE

SIGN

SIN

SQRT

TAN

TRUNCATE

Progress
OpenEdge DATABASECURDATEABSASCII

IFNULLCURTIMEACOSCHAR

DAYNAMEASINCONCAT USER

DAYOFMONTHATANDIFFERENCE

DAYOFWEEKATAN2LCASE

HOURCEILINGLEFT

MINUTECOSLENGTH

MONTHDEGREESLOCATE

67 Supported for PostgreSQL 9.1 and higher

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4282

Chapter 7: SQL Escape Sequences for JDBC

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

MONTHNAMEEXPLTRIM

NOWFLOORREPEAT

QUARTERLOG10REPLACE

SECONDMODRIGHT

TIMESTAMPADDPIRTRIM

TIMESTAMPDIFFPOWERSPACE

WEEKRADIANSSUBSTRING

ROUND YEARUCASE

SIN

SQRT

TAN

SQL
Server DATABASEDAYNAMEABSASCII

IFNULLDAYOFMONTHACOSCHAR

DAYOFWEEKASINCONCAT USER

DAYOFYEARATANDIFFERENCE

EXTRACTATAN2INSERT

HOURCEILINGLCASE

MINUTECOSLEFT

MONTHCOTLENGTH

MONTHNAMEDEGREESLOCATE

NOWEXPLTRIM

QUARTERFLOORREPEAT

SECONDLOGREPLACE

TIMESTAMPADDLOG10RIGHT

TIMESTAMPDIFFMODRTRIM

WEEKPISOUNDEX

POWERSPACE YEAR

RADIANSSUBSTRING

RANDUCASE

ROUND

SIGN

SIN

SQRT

TAN

283Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Scalar Functions

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

TRUNCATE

Sybase
DATABASEDAYNAMEABSASCII

IFNULLDAYOFMONTHACOSCHAR

DAYOFWEEKASINCONCAT USER

DAYOFYEARATANDIFFERENCE

HOURATAN2INSERT

MINUTECEILINGLCASE

MONTHCOSLEFT

MONTHNAMECOTLENGTH

NOWDEGREESLOCATE

QUARTEREXPLTRIM

SECONDFLOORREPEAT

TIMESTAMPADDLOGRIGHT

TIMESTAMPDIFFLOG10RTRIM

WEEKMODSOUNDEX

PISPACE YEAR

POWERSUBSTRING

RADIANSUCASE

RAND

ROUND

SIGN

SIN

SQRT

TAN

Apache
Hive DBNAMECURDATEABSASCII

IFNULLCURRENT_DATEACOSCONCAT

CURRENT_TIMEASININSERT

CURRENT_TIMESTAMPATANLCASE

CURTIMECEILINGLEFT

DAYOFMONTHCOSLENGTH

EXTRACTCOTLOCATE

HOURDEGREESLOCATE2

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4284

Chapter 7: SQL Escape Sequences for JDBC

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

MINUTEEXPLTRIM

MONTHFLOORREPEAT

NOWLOGREPLACE

QUARTERLOG10RIGHT

SECONDMODPRTRIM

TIMESTAMPADD 68PISPACE

TIMESTAMPDIFFPOWERSUBSTRING

WEEKRADIANSUCASE

YEARRAND

ROUND

SIGN

SIN

SQRT

TAN

Greenplum
USERNAMECURDATEABSASCII

DBNAMECURRENT_DATEACOSBIT_LENGTH

68 Apache Hive is limited to adding only days to a timestamp.

285Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Scalar Functions

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

CURRENT_TIMEASINCHAR IFNULL

CURRENT_TIMESTAMPATANCHAR_LENGTH

CURTIMEATAN2CHARACTER_LENGTH

EXTRACTCEILINGCONCAT

COSLCASE NOW

COTLENGTH

DEGREESLOCATE

EXPLTRIM

FLOOROCTET_LENGTH

LOGPOSITION

LOG10REPEAT

MODREPLACE

PIRIGHT

POWERRTRIM

RADIANSSUBSTRING

RANDUCASE

ROUND

SIGN

SIN

SQRT

TAN

TRUNCATE

Salesforce
CURSESSIONIDCURDATEABSASCII

DATABASECURTIMEACOSBITLENGTH

IDENTITYDATEDIFFASINCHAR

DAYATANCHAR_LENGTH USER

DAYNAMEATAN2CHARACTER_LENGTH

DAYOFMONTHBITANDCONCAT

DAYOFWEEKBITORDIFFERENCE

DAYOFYEARBITXORHEXTORAW

HOURCEILINGINSERT

MINUTECOSLCASE

MONTHCOTLEFT

MONTHNAMEDEGREESLENGTH

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4286

Chapter 7: SQL Escape Sequences for JDBC

System FunctionsTimedate FunctionsNumeric
Functions

String FunctionsData
Store

NOWEXPLOCATE

QUARTERFLOORLOWER

SECONDLOGLTRIM

TO_CHARLOG10OCTET_LENGTH

WEEKMODRAWTOHEX

PIREPEAT YEAR

POWERREPLACE

RADIANSRIGHT

RANDRTRIM

ROUNDSOUNDEX

ROUNDMAGICSPACE

SIGNSUBSTR

SINSUBSTRING

SQRTUCASE

TANUPPER

TRUNCATE

Outer Join Escape Sequences
JDBC supports the SQL-92 left, right, and full outer join syntax. The escape sequence for outer joins is:

{oj outer-join}

where:

outer-join

is table-reference {LEFT | RIGHT | FULL} OUTER JOIN {table-reference |
outer-join} ON search-condition

table-reference

is a database table name.

search-condition

is the join condition you want to use for the tables.

Example:

SELECT Customers.CustID, Customers.Name, Orders.OrderID, Orders.Status
FROM {oj Customers LEFT OUTER JOIN

287Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Outer Join Escape Sequences

Orders ON Customers.CustID=Orders.CustID}
WHERE Orders.Status='OPEN'

The following table lists the outer join escape sequences supported by the drivers for each data store.

Table 35: Outer Join Escape Sequences Supported

Outer Join Escape SequencesData Store

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

DB2

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

Informix

Left outer joins

Right outer joins

Nested outer joins

MySQL

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

Oracle

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

PostgreSQL

Left outer joins

Nested outer joins

Progress OpenEdge

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

SQL Server

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4288

Chapter 7: SQL Escape Sequences for JDBC

Outer Join Escape SequencesData Store

Left outer joins

Right outer joins

Nested outer joins

Sybase

Left outer joins

Right outer joins

Full outer joins

Apache Hive

Left outer joins

Right outer joins

Full outer joins

Nested outer joins

Greenplum

Left outer joins

Right outer joins

Nested outer joins

Salesforce

LIKE Escape Character Sequence for Wildcards
You can specify the character to be used to escape wildcard characters (% and _, for example) in LIKE clauses.
The escape sequence for escape characters is:

{escape 'escape-character'}

where:

escape-character

is the character used to escape the wildcard character.

For example. the following SQL statement specifies that an asterisk (*) be used as the escape character in the
LIKE clause for the wildcard character %:

SELECT col1 FROM table1 WHERE col1 LIKE '*%%' {escape '*'}

Procedure Call Escape Sequences
A procedure is an executable object stored in the data store. Generally, it is one or more SQL statements that
have been precompiled. The escape sequence for calling a procedure is:

{[?=]call procedure-name[(parameter[,parameter]...)]}

289Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

LIKE Escape Character Sequence for Wildcards

where:

procedure-name

specifies the name of a stored procedure.

parameter

specifies a stored procedure parameter.

Note: For DB2 for Linux/UNIX/Windows, a catalog name cannot be used when calling a stored procedure.
Also, for DB2 V8.1 and V8.2 for Linux/UNIX/Windows, literal parameter values are supported for stored
procedures. Other supported DB2 versions do not support literal parameter values for stored procedures.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4290

Chapter 7: SQL Escape Sequences for JDBC

8
Using DataDirect Test

Use DataDirect Test to test your JDBC applications and learn the JDBC API. DataDirect Test contains menu
selections that correspond to specific JDBC functions, for example, connecting to a database or passing a SQL
statement. DataDirect Test allows you to perform the following tasks:

• Execute a single JDBC method or execute multiple JDBC methods simultaneously, so that you can easily
perform some common tasks, such as returning result sets

• Display the results of all JDBC function calls in one window, while displaying fully commented, JDBC code
in an alternate window

DataDirect Test works only with JDBC drivers from Progress DataDirect.

For details, see the following topics:

• DataDirect Test Tutorial

DataDirect Test Tutorial
This DataDirect Test tutorial explains how to use the most important features of DataDirect Test (and the JDBC
API) and assumes that you can connect to a database with the standard available demo table or fine-tune the
sample SQL statements shown in this example as appropriate for your environment.

Note: The tutorial describes functionality across a spectrum of data stores. In some cases, the functionality
described may not apply to the driver or data store you are using. Additionally, examples are drawn from a
variety of drivers and data stores.

291Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Note: The step-by-step examples used in this tutorial do not show typical clean-up routines (for example,
closing result sets and connections). These steps have been omitted to simplify the examples. Do not forget
to add these steps when you use equivalent code in your applications.

Configuring DataDirect Test
The default DataDirect Test configuration file is:

install_dir/testforjdbc/Config.txt

where:

install_dir

is your product installation directory.

The DataDirect Test configuration file can be edited as appropriate for your environment using any text editor.
All parameters are configurable, but the most commonly configured parameters are:

A list of colon-separated JDBC driver classes.Drivers

The default JDBC driver that appears in the Get Driver URL window.DefaultDriver

A list of comma-separated JDBC URLs. The first item in the list appears as
the default in theDatabase Selectionwindow. You can use one of these URLs
as a template when you make a JDBC connection. The default Config.txt file
contains example URLs for most databases.

Databases

Set to com.sun.jndi.fscontext.RefFSContextFactory if you are using
file system data sources, or com.sun.jndi.ldap.LdapCtxFactory if you
are using LDAP.

InitialContextFactory

The location of the .bindings file if you are using file system data sources, or
your LDAP Provider URL if you are using LDAP.

ContextProviderURL

A list of comma-separated JDBC data sources. The first item in the list appears
as the default in the Data Source Selection window.

Datasources

To connect using a data source, DataDirect Test needs to access a JNDI data store to persist the data source
information. By default, DataDirect Test is configured to use the JNDI File System Service Provider to persist
the data source. You can download the JNDI File System Service Provider from the Oracle Java Platform
Technology Downloads page.

Make sure that the fscontext.jar and providerutil.jar files from the download are on your classpath.

Starting DataDirect Test
How you start DataDirect Test depends on your platform:

• As a Java application on Windows. Run the testforjdbc.bat file located in the testforjdbc
subdirectory of your product installation directory.

• As a Java application on Linux/UNIX. Run the testforjdbc.sh shell script located in the testforjdbc
subdirectory in the installation directory.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4292

Chapter 8: Using DataDirect Test

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

After you start DataDirect Test, the Test for JDBC Tool window appears.

The main Test for JDBC Tool window shows the following information:

• In the Connection List box, a list of available connections.

• In the JDBC/Database Output scroll box, a report indicating whether the last action succeeded or failed.

• In the Java Code scroll box, the actual Java code used to implement the last action.

Tip: DataDirect Test windows contain two Concatenate check boxes. Select a Concatenate check box to
see a cumulative record of previous actions; otherwise, only the last action is shown. Selecting Concatenate
can degrade performance, particularly when displaying large result sets.

Connecting Using DataDirect Test
You can use either of the following methods to connect using DataDirect Test:

• Using a data source

• Using a driver/database selection

Connecting Using a Data Source
To connect using a data source, DataDirect Test needs to access a JNDI data store to persist the data source
information. By default, DataDirect Test is configured to use the JNDI File System Service Provider to persist
the data source. You can download the JNDI File System Service Provider from the Oracle Java Platform
Technology Downloads page.

Make sure that the fscontext.jar and providerutil.jar files from the download are on your classpath.

293Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR

To connect using a data source:

1. From the main Test for JDBC Tool window menu, select Connection / Connect to DB via Data Source.
The Select A Datasource window appears.

2. Select a data source from the Defined Datasources pane. In the User Name and Password fields, type
values for the User and Password connection properties; then, click Connect. For information about JDBC
connection properties, refer to your driver's connection property descriptions.

3. If the connection was successful, the Connection window appears and shows the Connection
Established message in the JDBC/Database Output scroll box.

Connecting Using Database Selection
To connect using database selection:

1. From the Test for JDBC Tool window menu, select Driver / Register Driver. DataDirect Test prompts for
a JDBC driver name.

2. In the Please Supply a Driver URL field, specify a driver (for example
com.ddtek.jdbc.sqlserver.SQLServerDriver); then, click OK.

If the driver was registered successfully, the Test for JDBC Tool window appears with a confirmation in
the JDBC/Database Output scroll box.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4294

Chapter 8: Using DataDirect Test

3. From the Test for JDBC Tool window, select Connection / Connect to DB. The Select A Database
window appears with a list of default connection URLs.

4. Select one of the default driver connection URLs. In the Database field, modify the default values of the
connection URL appropriately for your environment.

Note: There are two entries for DB2: one with locationName and another with databaseName. If you are
connecting to DB2 for Linux/UNIX/Windows, select the entry containing databaseName. If you are connecting
to DB2 for z/OS or DB2 for i, select the entry containing locationName.

5. In the User Name and Password fields, type the values for the User and Password connection properties;
then, click Connect. For information about JDBC connection properties, refer to your driver's connection
property descriptions.

6. If the connection was successful, the Connection window appears and shows the Connection
Established message in the JDBC/Database Output scroll box.

295Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

Executing a Simple Select Statement
This example explains how to execute a simple Select statement and return the results.

To Execute a Simple Select Statement:

1. From the Connection window menu, select Connection / Create Statement. The Connection window
indicates that the creation of the statement was successful.

2. Select Statement / Execute Stmt Query. DataDirect Test displays a dialog box that prompts for a SQL
statement.

3. Type a Select statement and click Submit. Then, click Close.

4. Select Results / Show All Results. The data from your result set displays in the JDBC/Database Output
scroll box.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4296

Chapter 8: Using DataDirect Test

5. Scroll through the code in the Java Code scroll box to see which JDBC calls have been implemented by
DataDirect Test.

Executing a Prepared Statement
This example explains how to execute a parameterized statement multiple times.

To Execute a Prepared Statement:

1. From the Connection window menu, select Connection / Create Prepared Statement. DataDirect Test
prompts you for a SQL statement.

2. Type an Insert statement and click Submit. Then, click Close.

3. Select Statement / Set Prepared Parameters. To set the value and type for each parameter:

297Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

a) Type the parameter number.

b) Select the parameter type.

c) Type the parameter value.

d) Click Set to pass this information to the JDBC driver.

4. When you are finished, click Close.

5. Select Statement / Execute Stmt Update. The JDBC/Database Output scroll box indicates that one row
has been inserted.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4298

Chapter 8: Using DataDirect Test

6. If you want to insert multiple records, repeat Step 3 on page 297 and Step 5 on page 298 for each record.

7. If you repeat the steps described in Executing a Simple Select Statement on page 296, you will see that the
previously inserted records are also returned.

299Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

Retrieving Database Metadata

1. From the Connection window menu, select Connection / Get DB Meta Data.

2. Select MetaData / Show Meta Data. Information about the JDBC driver and the database to which you are
connected is returned.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4300

Chapter 8: Using DataDirect Test

3. Scroll through the Java code in the Java Code scroll box to find out which JDBC calls have been implemented
by DataDirect Test.

Metadata also allows you to query the database catalog (enumerate the tables in the database, for example).
In this example, we will query all tables with the schema pattern test01.

4. Select MetaData / Tables.

5. In the Schema Pattern field, type test01.

6. Click Ok. The Connection window indicates that getTables() succeeded.

7. Select Results / Show All Results. All tables with a test01 schema pattern are returned.

301Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

Scrolling Through a Result Set

1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement. DataDirect Test
prompts for a result set type and concurrency.

2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_READ_ONLY.

c) Click Submit; then, click Close.

3. Select Statement / Execute Stmt Query.

4. Type a Select statement and click Submit. Then, click Close.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4302

Chapter 8: Using DataDirect Test

5. Select Results / Scroll Results. The Scroll Result Set window indicates that the cursor is positioned
before the first row.

6. Click the Absolute, Relative, Before, First, Prev, Next, Last, and After buttons as appropriate to navigate
through the result set. After each action, the Scroll Result Set window displays the data at the current
position of the cursor.

303Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

7. Click Close.

Batch Execution on a Prepared Statement
Batch execution on a prepared statement allows you to update or insert multiple records simultaneously. In
some cases, this can significantly improve system performance because fewer round trips to the database are
required.

To Execute a Batch on a Prepared Statement:

1. From the Connection window menu, select Connection / Create Prepared Statement.

Type an Insert statement and click Submit. Then, click Close.

2. Select Statement / Add Stmt Batch.

3. For each parameter:

a) Type the parameter number.

b) Select the parameter type.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4304

Chapter 8: Using DataDirect Test

c) Type the parameter value.

d) Click Set.

4. Click Add to add the specified set of parameters to the batch. To add multiple parameter sets to the batch,
repeat Step 2 on page 304 through Step 4 on page 305 as many times as necessary. When you are finished
adding parameter sets to the batch, click Close.

5. Select Statement / Execute Stmt Batch. DataDirect Test displays the rowcount for each of the elements
in the batch.

305Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

6. If you re-execute the Select statement from Executing a Simple Select Statement on page 296, you see that
the previously inserted records are returned.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4306

Chapter 8: Using DataDirect Test

Returning ParameterMetaData

Note: Returning ParameterMetaData requires a Java SE 5 or higher JVM.

1. From the Connection window menu, select Connection / Create Prepared Statement.

Type the prepared statement and click Submit. Then, click Close.

2. Select Statement / Get ParameterMetaData. The Connection window displays ParameterMetaData.

307Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

Establishing Savepoints

Note: Savepoints require a Java SE 5 or higher JVM.

1. From the Connection window menu, select Connection / Connection Properties.

2. Select TRANSACTION_COMMITTED from the Transaction Isolation drop-down list. Do not select the Auto
Commit check box.

3. Click Set; then, click Close.

4. From the Connection window menu, select Connection / Load and Go. The Get Load And Go SQL
window appears.

5. Type a statement and click Submit.

6. Select Connection / Set Savepoint.

7. In the Set Savepoints window, type a savepoint name.

8. Click Apply; then, click Close. The Connection window indicates whether or not the savepoint succeeded.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4308

Chapter 8: Using DataDirect Test

9. Return to the Get Load And Go SQL window and specify another statement. Click Submit.

10. Select Connection / Rollback Savepoint. In the Rollback Savepoints window, specify the savepoint
name.

11. Click Apply; then, click Close. The Connection window indicates whether or not the savepoint rollback
succeeded.

309Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

12. Return to the Get Load And Go SQL window and specify another statement.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4310

Chapter 8: Using DataDirect Test

ClickSubmit; then, clickClose. TheConnectionwindow displays the data inserted before the first Savepoint.
The second insert was rolled back.

Updatable Result Sets
The following examples explain the concept of updatable result sets by deleting, inserting, and updating a row.

Deleting a Row
1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.

2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

3. Click Submit; then, click Close.

4. Select Statement / Execute Stmt Query.

311Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

5. Specify the Select statement and click Submit. Then, click Close.

6. Select Results / Inspect Results. The Inspect Result Set window appears.

7. Click Next. Current Row changes to 1.

8. Click Delete Row.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4312

Chapter 8: Using DataDirect Test

9. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

10. Specify the statement that you want to execute and click Submit. Then, click Close.

11. The Connection window shows that the row has been deleted.

Inserting a Row
1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.

2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

313Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

3. Click Submit; then, click Close.

4. Select Statement / Execute Stmt Query.

5. Specify the Select statement that you want to execute and click Submit. Then, click Close.

6. Select Results / Inspect Results. The Inspect Result Set window appears.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4314

Chapter 8: Using DataDirect Test

7. Click Move to insert row; Current Row is now Insert row.

8. Change Data Type to int. In Set Cell Value, enter 20. Click Set Cell.

9. Select the second row in the top pane. Change the Data Type to String. In Set Cell Value, enter RESEARCH.
Click Set Cell.

10. Select the third row in the top pane. In Set Cell Value, enter DALLAS. Click Set Cell.

11. Click Insert Row.

12. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

13. Specify the statement that you want to execute and click Submit. Then, click Close.

315Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

14. The Connection window shows the newly inserted row.

Caution: The ID will be 3 for the row you just inserted because it is an auto increment column.

Updating a Row
1. From the Connection window menu, select Connection / Create JDBC 2.0 Statement.

2. Complete the following fields:

a) In the resultSetType field, select TYPE_SCROLL_SENSITIVE.

b) In the resultSetConcurrency field, select CONCUR_UPDATABLE.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4316

Chapter 8: Using DataDirect Test

3. Click Submit; then, click Close.

4. Select Statement / Execute Stmt Query.

5. Specify the Select statement that you want to execute.

6. Click Submit; then, click Close.

7. Select Results / Inspect Results. The Inspect Result Set window appears.

317Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

8. Click Next. Current Row changes to 1.

9. In Set Cell Value, type RALEIGH. Then, click Set Cell.

10. Click Update Row.

11. To verify the result, return to the Connection menu and select Connection / Load and Go. The Get Load
And Go SQL window appears.

12. Specify the statement that you want to execute.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4318

Chapter 8: Using DataDirect Test

13. Click Submit; then, click Close.

14. The Connection window shows LOC for accounting changed from NEW YORK to RALEIGH.

Retrieving Large Object Data

Note: LOB support (Blobs and Clobs) requires a Java SE 5 or higher JVM.

The following example uses Clob data; however, this procedure also applies to Blob data. This example
illustrates only one of multiple ways in which LOB data can be processed.

1. From the Connection window menu, select Connection / Create Statement.

2. Select Statement / Execute Stmt Query.

319Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

3. Specify the Select statement that you want to execute.

4. Click Submit; then, click Close.

5. Select Results / Inspect Results. The Inspect Result Set window appears.

6. Click Next. Current Row changes to 1.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4320

Chapter 8: Using DataDirect Test

7. Deselect Auto Traverse. This disables automatic traversal to the next row.

8. Click Get Cell. Values are returned in the Get Cell Value field.

9. Change the data type to Clob.

321Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

10. Click Get Cell. The Clob data window appears.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4322

Chapter 8: Using DataDirect Test

11. Click Get Cell. Values are returned in the Cell Value field.

323Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Test Tutorial

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4324

Chapter 8: Using DataDirect Test

9
Tracking JDBC Calls with DataDirect Spy

DataDirect Spy is functionality that is built into the drivers. It is used to log detailed information about calls your
driver makes and provide information you can use for troubleshooting. DataDirect Spy provides the following
advantages:

• Logging is JDBC 4.0-compliant.

• Logging is consistent, regardless of which DataDirect Connect Series for JDBC driver is used.

• All parameters and function results for JDBC calls can be logged.

• Logging works with all DataDirect Connect Series for JDBC drivers.

• Logging can be enabled without changing the application.

When you enable DataDirect Spy for a connection, you can customize logging by setting one or multiple options
for DataDirect Spy. For example, you may want to direct logging to a local file on your machine.

Once logging is enabled for a connection, you can turn it on and off at runtime using the setEnableLogging()
method in the com.ddtek.jdbc.extensions.ExtLogControl interface. See Troubleshooting Your Application on
page 357 for information about using a DataDirect Spy log for troubleshooting.

For details, see the following topics:

• Enabling DataDirect Spy

Enabling DataDirect Spy
You can enable DataDirect Spy for a connection using either of the following methods:

325Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

• Specifying the SpyAttributes connection property for connections using the JDBC Driver Manager. See
Using the JDBC Driver Manager on page 326 for instructions.

• Specifying DataDirect Spy attributes using a JDBC data source. See Using JDBC Data Sources on page
327 for instructions.

You can set one or multiple options to customize DataDirect Spy logging. See DataDirect Spy Attributes on
page 328 for a complete list of supported attributes.

Using the JDBC Driver Manager
The SpyAttributes connection property allows you to specify a semi-colon separated list of DataDirect Spy
attributes (see DataDirect Spy Attributes on page 328). The format for the value of the SpyAttributes property
is:

(
spy_attribute
[;
spy_attribute
]...)

where spy_attribute is any valid DataDirect Spy attribute. See DataDirect Spy Attributes on page 328 for a list
of supported attributes.

Example on Windows:
The following example uses the JDBC Driver Manager to connect to Microsoft SQL Server while enabling
DataDirect Spy:

Class.forName("com.ddtek.jdbc.sqlserver.SQLServerDriver");
Connection conn = DriverManager.getConnection

("jdbc:datadirect:sqlserver://Server1:1433;User=TEST;Password=secret;
SpyAttributes=(log=(filePrefix)C:\\temp\\spy_;linelimit=80;logTName=yes;
timestamp=yes)");

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example: log=(filePrefix)C:\\temp\\spy_.

Using this example, DataDirect Spy loads the SQL Server driver and logs all JDBC activity to the spy_x.log
file located in the C:\temp directory (log=(filePrefix)C:\\temp\\spy_), where x is an integer that
increments by 1 for each connection on which the prefix is specified. The spy_x.log file logs a maximum of 80
characters on each line (linelimit=80) and includes the name of the current thread (logTName=yes) and
a timestamp on each line in the log (timestamp=yes).

Example on UNIX:
The following code example uses the JDBC Driver Manager to connect to DB2 while enabling DataDirect Spy:

Class.forName("com.ddtek.jdbc.db2.DB2Driver");
Connection conn = DriverManager.getConnection

("jdbc:datadirect:db2://Server1:50000;User=TEST;Password=secret;
SpyAttributes=(log=(filePrefix)/tmp/spy_;logTName=yes;timestamp=yes)");

Using this example, DataDirect Spy loads the DB2 driver and logs all JDBC activity to the spy_x.log file located
in the /tmp directory (log=(filePrefix)/tmp/spy_), where x is an integer that increments by 1 for
each connection on which the prefix is specified. The spy_x.log file includes the name of the current thread
(logTName=yes) and a timestamp on each line in the log (timestamp=yes).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4326

Chapter 9: Tracking JDBC Calls with DataDirect Spy

Using JDBC Data Sources
The drivers implement the following JDBC features:

• JNDI for Naming Databases

• Connection Pooling

• Java Transaction API (JTA)

Note: JTA is only supported by the DB2, Informix, Oracle, OpenEdge, SQL Server, and Sybase drivers.

You can use DataDirect Spy to track JDBC calls made by a running application with any of these features. The
com.ddtek.jdbcx.datasource.DriverDataSource class, where Driver is the driver name, supports setting a
semi-colon-separated list of DataDirect Spy attributes (see DataDirect Spy Attributes on page 328).

Refer to the DataDirect Connect Series for JDBC User’s Guide for more information about configuring data
sources.

Example on Windows:
The following example creates a JDBC data source for the DB2 driver, which enables DataDirect Spy.

DB2DataSource sds=new DB2DataSource():
sds.setServerName("Server1");
sds.setPortNumber(50000);
sds.setSpyAttributes("log=(file)C:\\temp\\spy.log;logIS=yes;logTName=yes");
Connection conn=sds.getConnection("TEST","secret");
...

Note: If coding a path on Windows to the log file in a Java string, the backslash character (\) must be preceded
by the Java escape character, a backslash. For example:
log=(file)C:\\temp\\spy.log;logIS=yes;logTName=yes.

Using this example, DataDirect Spy would load the DB2 driver and log all JDBC activity to the spy.log file
located in the C:\temp directory (log=(file)C:\\temp\\spy.log). In addition to regular JDBC activity,
the spy.log file also logs activity on InputStream and Reader objects (logIS=yes). It also includes the name
of the current thread (logTName=yes).

Example on UNIX:
The following example creates a JDBC data source for the Oracle driver, which enables DataDirect Spy.

OracleDataSource mds = new OracleDataSource();
mds.setServerName("Server1");
mds.setPortNumber(1521);
mds.setSID("ORCL");...
sds.setSpyAttributes("log=(file)/tmp/spy.log;logTName=yes");
Connection conn=sds.getConnection("TEST","secret");
...

Using this example, DataDirect Spy would load the Oracle driver and log all JDBC activity to the spy.log file
located in the /tmp directory (log=(file)/tmp/spy.log). The spy.log file includes the name of the current
thread (logTName=yes).

327Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Enabling DataDirect Spy

DataDirect Spy Attributes
DataDirect Spy supports the attributes described in the following table.

Table 36: DataDirect Spy Attributes

DescriptionAttribute

Sets the maximum number of characters that DataDirect Spy logs on a single line.

The default is 0 (no maximum limit).

linelimit=numberofchars

Loads the driver specified by classname. For example, the
com.ddtek.jdbc.db2.DB2Driver class name loads the DB2 driver.

load=classname

Directs logging to the file specified by filename.

For Windows, if coding a path to the log file in a Java string, the backslash character
(\) must be preceded by the Java escape character, a backslash. For example:
log=(file)C:\\temp\\spy.log;logIS=yes;logTName=yes.

log=(file)filename

Directs logging to a file prefixed by file_prefix. The log file is named file_prefixX.log

where:

X

is an integer that increments by 1 for each connection on which the prefix
is specified.

For example, if the attribute log=(filePrefix) C:\\temp\\spy_ is specified on multiple
connections, the following logs are created:

C:\temp\spy_1.log
C:\temp\spy_2.log
C:\temp\spy_3.log
...

If coding a path to the log file in a Java string, the backslash character (\) must be
preceded by the Java escape character, a backslash. For example:
log=(filePrefix)C:\\temp\\spy_;logIS=yes;logTName=yes.

log=(filePrefix)file_prefix

Directs logging to the Java output standard, System.out.log=System.out

Specifies whether DataDirect Spy logs activity on InputStream and Reader objects.

When logIS=nosingleread, logging on InputStream and Reader objects is active;
however, logging of the single-byte read InputStream.read or single-character
Reader.read is suppressed to prevent generating large log files that contain
single-byte or single character read messages.

The default is no.

logIS={yes | no | nosingleread}

Specifies whether DataDirect Spy logs activity on BLOB and CLOB objects.logLobs={yes | no}

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4328

Chapter 9: Tracking JDBC Calls with DataDirect Spy

DescriptionAttribute

Specifies whether DataDirect Spy logs the name of the current thread.

The default is no.

logTName={yes | no}

Specifies whether a timestamp is included on each line of the DataDirect Spy log.
The default is no.

timestamp={yes | no}

329Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Enabling DataDirect Spy

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4330

Chapter 9: Tracking JDBC Calls with DataDirect Spy

10
Connection Pool Manager

Connection pooling means that connections are reused rather than created each time a connection is requested.
Your application can use connection pooling through the DataDirect Connection Pool Manager.

Connection pooling is performed in the background and does not affect how an application is coded; however,
the application must use a DataSource object (an object implementing the DataSource interface) to obtain a
connection instead of using the DriverManager class. A class implementing the DataSource interface may or
may not provide connection pooling. A DataSource object registers with a JNDI naming service. Once a
DataSource object is registered, the application retrieves it from the JNDI naming service in the standard way.

For details, see the following topics:

• About JDBC Connection Pools

• Configuring the Connection Pool

• Checking the Pool Manager Version

• Enabling Pool Manager Tracing

• Using a DataDirect Connection Pool

• Connecting Using a Connection Pool

• Closing the Connection Pool

• DataDirect Connection Pool Manager Interfaces

331Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

About JDBC Connection Pools
There is a one-to-one relationship between a JDBC connection pool and a data source, so the number of
connection pools used by an application depends on the number of data sources configured to use connection
pooling. If multiple applications are configured to use the same data source, those applications share the same
connection pool as shown in the following figure.

An application may use only one data source, but allow multiple users, each with their own set of login credentials.
The connection pool contains connections for all unique users using the same data source as shown in the
following figure.

Connections are one of the following types:

• Active connection is a connection that is in use by the application.

• Idle connection is a connection in the connection pool that is available for use.

Configuring the Connection Pool
You can configure attributes of a connection pool for optimal performance and scalability using the methods
provided by the DataDirect Connection Pool Manager classes (see DataDirect Connection Pool Manager
Interfaces on page 339).

Some commonly set connection pool attributes include:

• Minimum pool size, which is the minimum number of connections that will be kept in the pool for each user

• Maximum pool size, which is the maximum number of connections in the pool for each user

• Initial pool size, which is the number of connections created for each user when the connection pool is
initialized

• Maximum idle time, which is the amount of time a pooled connection remains idle before it is removed from
the connection pool

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4332

Chapter 10: Connection Pool Manager

See Understanding the Maximum Pool Size on page 333 for more information about how the Pool Manager
implements the maximum pool size. In addition, the Pool Manager implements minimum pool size, maximum
pool size, and initial pool size differently depending on whether reauthentication is enabled. See Using
Reauthentication with the Pool Manager on page 333 for details.

Understanding the Maximum Pool Size
You set the maximum pool size using the PooledConnectionDataSource.setMaxPoolSize() method. For example,
the following code sets the maximum pool size to 10:

ds.setMaxPoolSize(10);

You can control how the Pool Manager implements the maximum pool size by setting the
PooledConnectionDataSource.setMaxPoolSizeBehavior() method:

• If setMaxPoolSizeBehavior(softCap), the number of active connections can exceed the maximum
pool size, but the number of idle connections for each user in the pool cannot exceed this limit. If a user
requests a connection and an idle connection is unavailable, the Pool Manager creates a new connection
for that user. When the connection is no longer needed, it is returned to the pool. If the number of idle
connections exceeds the maximum pool size, the Pool Manager closes idle connections to enforce the pool
size limit. This is the default behavior.

• If setMaxPoolSizeBehavior(hardCap), the total number of active and idle connections cannot exceed
the maximum pool size. Instead of creating a new connection for a connection request if an idle connection
is unavailable, the Pool Manager queues the connection request until a connection is available or the request
times out. This behavior is useful if your client or application server has memory limitations or if your database
server is licensed for only a certain number of connections.

See PooledConnectionDataSource on page 340 for more information about these methods.

Using Reauthentication with the Pool Manager
Reauthentication, or the ability to switch a user on a connection, is a useful strategy for minimizing the number
of connections that are required in a connection pool. Refer to the DataDirect Connect Series for JDBC User’s
Guide for an introduction to reauthentication.

If you are using the DataDirect Connection Pool Manager for connection pooling, you can enable reauthentication
in the Pool Manager. By default, reauthentication is disabled. To enable reauthentication, call
setReauthentication(enable) on the PooledConnectionDataSource. To disable reauthentication, call
setReauthentication(disable).

The Pool Manager implements the maximum pool size, minimum pool size, and initial pool size attributes
differently depending on whether reauthentication is enabled. For example, in both of the following figures, the
maximum pool size is set to a value of 10, the minimum pool size is set to 5, and the initial pool size is set to 5.

The following figure shows a connection pool that is configured to work without reauthentication while using
the default behavior for maximum pool size. When User A requests a connection, the Pool Manager assigns
an available connection associated with User A. Similarly, if User B requests a connection, the Pool Manager
assigns an available connection associated with User B. If a connection is unavailable for a particular user,
the Pool Manager creates a new connection for that user. Because the maximum pool size is set to 10, a
maximum of 10 idle connections can exist for each user. In this case, the total number of idle connections is 20,
or 10 idle connections for each user.

333Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Configuring the Connection Pool

The Pool Manager implements the minimum pool size and initial pool size in a similar way. The Pool Manager
initially populates five connections for User A and five connections for User B, and ensures that, at a minimum,
five idle connections are maintained in the pool for each user.

In contrast, the following figure shows a connection pool that is configured to work with reauthentication while
using the default behavior for maximum pool size. The Pool Manager treats all connections as one group of
connections. When User A requests a connection, the Pool Manager assigns an available connection associated
with User A. Similarly, when User B requests a connection, the Pool Manager assigns an available connection
associated with User B. If a connection is unavailable for a particular user, the Pool Manager assigns any
available connection to that user, switching the user associated with the connection to the new user. In this
case, the maximum number of idle connections in the pool is 10, regardless of how many users are using the
connection pool.

The Pool Manager initially populates the pool with five connections and ensures that, at a minimum, five idle
connections are maintained in the pool for all users.

Checking the Pool Manager Version
To check the version of your DataDirect Connection Pool Manager, navigate to the directory containing the
DataDirect Connection Pool Manager (install_dir/pool manager where install_dir is your product installation
directory). At a command prompt, enter the command:

On Windows:
java -classpath poolmgr_dir\pool.jar com.ddtek.pool.PoolManagerInfo

On UNIX:
java -classpath poolmgr_dir/pool.jar com.ddtek.pool.PoolManagerInfo

where:

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4334

Chapter 10: Connection Pool Manager

poolmgr_dir

is the directory containing the DataDirect Connection Pool Manager.

Alternatively, you can obtain the name and version of the DataDirect Connection Pool Manager programmatically
by invoking the following static methods: com.ddtek.pool.PoolManagerInfo.getPoolManagerName() and
com.ddtek.pool.PoolManagerInfo.getPoolManagerVersion().

Enabling Pool Manager Tracing
You can enable Pool Manager tracing by calling setTracing(true) on the PooledConnectionDataSource
connection. To disable logging, call setTracing(false).

By default, the DataDirect Connection Pool Manager logs its pool activities to the standard output System.out.
You can change where the Pool Manager trace information is written by calling the setLogWriter() method on
the PooledConnectionDataSource connection.

See Troubleshooting Connection Pooling on page 360 for information about using a Pool Manager trace file for
troubleshooting.

Using a DataDirect Connection Pool
1. Create and register with JNDI a DataDirect Connect Series for JDBC driver DataSource object. Once created,

this DataSource object can be used by a connection pool (PooledConnectionDataSource object created in
Step 2 on page 335) to create connections for one or multiple connection pools.

2. To create a connection pool, you must create and register with JNDI a PooledConnectionDataSource object.
A PooledConnectionDataSource creates and manages one or multiple connection pools. The
PooledConnectionDataSource uses the driver DataSource object created in Step 1 on page 335 to create
the connections for the connection pool.

Creating a Driver DataSource Object
The following Java code example creates a DataDirect Connect Series for JDBC driver DataSource object and
registers it with a JNDI naming service.

The DataSource class is provided by DataDirect Connect Series for JDBC and is database-dependent. In this
example we use Oracle, so the DataSource class is OracleDataSource. Refer to the appropriate driver chapter
in the DataDirect Connect Series for JDBC User’s Guide for the name of the DataSource class for your driver.

Note: The DataSource class implements the ConnectionPoolDataSource interface for pooling in addition to
the DataSource interface for non-pooling.

//**
// This code creates a DataDirect Connect Series for JDBC data source and
// registers it to a JNDI naming service. This JDBC data source uses the
// DataSource implementation provided by DataDirect Connect Series
// for JDBC Drivers.
//
// This data source registers its name as <jdbc/ConnectSparkyOracle>.
//// NOTE: To connect using a data source, the driver needs to access a JNDI data
// store to persist the data source information. To download the JNDI File

335Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Enabling Pool Manager Tracing

// System Service Provider, go to:
//
// http://www.oracle.com/technetwork/java/javasebusiness/downloads/
// java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
////
// Make sure that the fscontext.jar and providerutil.jar files from the
// download are on your classpath.
//**
// From DataDirect Connect Series for JDBC:
import com.ddtek.jdbcx.oracle.OracleDataSource;
import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;
public class OracleDataSourceRegisterJNDI
{ public static void main(String argv[])

{
try {
// Set up data source reference data for naming context:
// --
// Create a class instance that implements the interface
// ConnectionPoolDataSource
OracleDataSource ds = new OracleDataSource();
ds.setDescription("Oracle on Sparky - Oracle Data Source");
ds.setServerName("sparky");
ds.setPortNumber(1521);
ds.setUser("scott");
ds.setPassword("test");
// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");
Context ctx = new InitialContext(env);
// Register the data source to JNDI naming service
ctx.bind("jdbc/ConnectSparkyOracle", ds);
} catch (Exception e) {
System.out.println(e);
return;
}

} // Main
// class OracleDataSourceRegisterJNDI

Creating the Connection Pool
To create a connection pool, you must create and register with JNDI a PooledConnectionDataSource object.
The following Java code creates a PooledConnectionDataSource object and registers it with a JNDI naming
service.

To specify the driver DataSource object to be used by the connection pool to create pooled connections, set
the parameter of the DataSourceName method to the JNDI name of a registered driver DataSource object.
For example, the following code sets the parameter of the DataSourceName method to the JNDI name of the
driver DataSource object created in Creating a Driver DataSource Object on page 335.

The PooledConnectionDataSource class is provided by the DataDirect com.ddtek.pool package. See
PooledConnectionDataSource on page 340 for a description of the methods supported by the
PooledConnectionDataSource class.

//**
// This code creates a data source and registers it to a JNDI naming service.
// This data source uses the PooledConnectionDataSource
// implementation provided by the DataDirect com.ddtek.pool package.
//
// This data source refers to a registered
// DataDirect Connect Series for JDBC driver DataSource object.
//

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4336

Chapter 10: Connection Pool Manager

// This data source registers its name as <jdbc/SparkyOracle>.
//
// NOTE: To connect using a data source, the driver needs to access a JNDI data
// store to persist the data source information. To download the JNDI File
// System Service Provider, go to:
//
// http://www.oracle.com/technetwork/java/javasebusiness/downloads/
// java-archive-downloads-java-plat-419418.html#7110-jndi-1.2.1-oth-JPR
//
// Make sure that the fscontext.jar and providerutil.jar files from the
// download are on your classpath.
//**
// From the DataDirect connection pooling package:
import com.ddtek.pool.PooledConnectionDataSource;

import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;

public class PoolMgrDataSourceRegisterJNDI
{

public static void main(String argv[])
{

try {
// Set up data source reference data for naming context:
// --
// Create a pooling manager's class instance that implements
// the interface DataSource
PooledConnectionDataSource ds = new PooledConnectionDataSource();

ds.setDescription("Sparky Oracle - Oracle Data Source");

// Specify a registered driver DataSource object to be used
// by this data source to create pooled connections
ds.setDataSourceName("jdbc/ConnectSparkyOracle");

// The pool manager will be initiated with 5 physical connections
ds.setInitialPoolSize(5);

// The pool maintenance thread will make sure that there are 5
// physical connections available
ds.setMinPoolSize(5);

// The pool maintenance thread will check that there are no more
// than 10 physical connections available
ds.setMaxPoolSize(10);

// The pool maintenance thread will wake up and check the pool
// every 20 seconds
ds.setPropertyCycle(20);

// The pool maintenance thread will remove physical connections
// that are inactive for more than 300 seconds
ds.setMaxIdleTime(300);

// Set tracing off because we choose not to see an output listing
// of activities on a connection
ds.setTracing(false);

// Set up environment for creating initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");
Context ctx = new InitialContext(env);

// Register this data source to the JNDI naming service
ctx.bind("jdbc/SparkyOracle", ds);

337Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using a DataDirect Connection Pool

catch (Exception e) {
System.out.println(e);
return;

}
}

}

Connecting Using a Connection Pool
Because an application uses connection pooling by referencing the JNDI name of a registered
PooledConnectionDataSource object, code changes are not required for an application to use connection
pooling.

The following example shows Java code that looks up and uses the JNDI-registered
PooledConnectionDataSource object created in Creating the Connection Pool on page 336.

//**
// Test program to look up and use a JNDI-registered data source.
//
// To run the program, specify the JNDI lookup name for the
// command-line argument, for example:
//
// java TestDataSourceApp <jdbc/SparkyOracle>
//**
import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import java.util.Hashtable;
public class TestDataSourceApp
{ public static void main(String argv[])

{
String strJNDILookupName = "";
// Get the JNDI lookup name for a data source
int nArgv = argv.length;
if (nArgv != 1) {

// User does not specify a JNDI lookup name for a data source,
System.out.println(

"Please specify a JNDI name for your data source");
System.exit(0);
else {
strJNDILookupName = argv[0];

}
DataSource ds = null;
Connection con = null;
Context ctx = null;
Hashtable env = null;
long nStartTime, nStopTime, nElapsedTime;
// Set up environment for creating InitialContext object
env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:c:\\JDBCDataSource");
try {

// Retrieve the DataSource object that is bound to the logical
// lookup JNDI name
ctx = new InitialContext(env);
ds = (DataSource) ctx.lookup(strJNDILookupName);
catch (NamingException eName) {
System.out.println("Error looking up " +

strJNDILookupName + ": " +eName);
System.exit(0);

}
int numOfTest = 4;
int [] nCount = {100, 100, 1000, 3000};
for (int i = 0; i < numOfTest; i ++) {

// Log the start time

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4338

Chapter 10: Connection Pool Manager

nStartTime = System.currentTimeMillis();
for (int j = 1; j <= nCount[i]; j++) {

// Get Database Connection
try {

con = ds.getConnection("scott", "tiger");
// Do something with the connection
// ...
// Close Database Connection
if (con != null) con.close();
} catch (SQLException eCon) {
System.out.println("Error getting a connection: " + eCon);
System.exit(0);
} // try getConnection

} // for j loop
// Log the end time
nStopTime = System.currentTimeMillis();
// Compute elapsed time
nElapsedTime = nStopTime - nStartTime;
System.out.println("Test number " + i + ": looping " +

nCount[i] + " times");
System.out.println("Elapsed Time: " + nElapsedTime + "\n");

} // for i loop
// All done
System.exit(0);
// Main

} // TestDataSourceApp

Note: To use non-pooled connections, specify the JNDI name of a registered driver DataSource object as the
command-line argument when you run the preceding application. For example, the following command specifies
the driver DataSource object created in Creating a Driver DataSource Object on page 335: java
TestDataSourceApp jdbc/ConnectSparkyOracle

Closing the Connection Pool
To ensure that the connection pool is closed correctly when an application stops running, the application must
notify the DataDirect Connection Pool Manager when it stops. For applications running on J2SE 5 and higher,
notification occurs automatically when the application stops running.

The PooledConnectionDataSource.close() method also can be used to explicitly close the connection pool
while the application is running. For example, if changes are made to the pool configuration using a pool
management tool, the PooledConnectionDataSource.close() method can be used to force the connection pool
to close and re-create the pool using the new configuration values.

DataDirect Connection Pool Manager Interfaces
This section describes the methods used by the DataDirect Connection Pool Manager interfaces:
PooledConnectionDataSourceFactory, PooledConnectionDataSource, and ConnectionPoolMonitor.

339Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Closing the Connection Pool

PooledConnectionDataSourceFactory
The PooledConnectionDataSourceFactory interface is used to create a PooledConnectionDataSource object
from a Reference object that is stored in a naming or directory service. These methods are typically invoked
by a JNDI service provider; they are not usually invoked by a user application.

DescriptionPooledConnectionDataSourceFactory Methods

Creates a PooledConnectionDataSource object from a
Reference object that is stored in a naming or directory
service. This is an implementation of the method of the
same name defined in the javax.naming.spi.ObjectFactory
interface. Refer to the Javadoc for this interface for a
description.

static Object getObjectInstance(Object refObj, Name name,
Context nameCtx, Hashtable env)

PooledConnectionDataSource
The PooledConnectionDataSource interface is used to create a PooledConnectionDataSource object for use
with the DataDirect Connection Pool Manager.

DescriptionPooledConnectionDataSource Methods

Closes the connection pool. All physical connections in the pool are
closed. Any subsequent connection request re-initializes the connection
pool.

void close()

Obtains a physical connection from the connection pool.Connection getConnection()

Obtains a physical connection from the connection pool, where user
is the user requesting the connection and password is the password
for the connection.

Connection getConnection(String user, String
password)

Returns the JNDI name that is used to look up the DataDirect
DataSource object referenced by this PooledConnectionDataSource.

String getDataSourceName()

Returns the description of this PooledConnectionDataSource.String getDescription()

Returns whether the Pool Manager is enabled for reauthentication. See
Using Reauthentication with the Pool Manager on page 333 for more
information.

String getReauthentication()

Returns the value of the initial pool size, which is the number of physical
connections created when the connection pool is initialized.

int getInitialPoolSize()

Returns the value of the login timeout, which is the time allowed for the
database login to be validated.

int getLoginTimeout()

Returns the writer to which the Pool Manager sends trace information
about its activities.

PrintWriter getLogWriter()

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4340

Chapter 10: Connection Pool Manager

DescriptionPooledConnectionDataSource Methods

Returns the value of the maximum idle time, which is the time a physical
connection can remain idle in the connection pool before it is removed
from the connection pool.

int getMaxIdleTime()

Returns the value of the maximum pool size. See Understanding the
Maximum Pool Size on page 333 for more information about how the
Pool Manager implements the maximum pool size.

int getMaxPoolSize()

Returns the value of the maximum pool size behavior. See
Understanding the Maximum Pool Size on page 333 for more information
about how the Pool Manager implements the maximum pool size.

int getMaxPoolSizeBehavior()

Returns the value of the minimum pool size, which is the minimum
number of idle connections to be kept in the pool.

int getMinPoolSize()

Returns the value of the property cycle, which specifies how often the
pool maintenance thread wakes up and checks the connection pool.

int getPropertyCycle()

Obtains a javax.naming.Reference object for this
PooledConnectionDataSource. The Reference object contains all the
state information needed to recreate an instance of this data source
using the PooledConnectionDataSourceFactory object. This method
is typically called by a JNDI service provider when this
PooledConnectionDataSource is bound to a JNDI naming service.

Reference getReference()

Returns an array of Connection Pool Monitors, one for each connection
pool managed by the Pool Manager.

public static ConnectionPoolMonitor[]
getMonitor()

341Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Connection Pool Manager Interfaces

DescriptionPooledConnectionDataSource Methods

Returns the name of the Connection Pool Monitor for the connection
pool specified by name. If a pool with the specified name cannot be
found, this method returns null. The connection pool name has the
form:

jndi_name-user_id

where:

jndi_name

is the name used for the JNDI lookup of the driver DataSource
object from which the pooled connection was obtained and

user_id

is the user ID used to establish the connections contained in
the pool.The following example shows how to return the
Connection Pool Monitor for the connection pool that is bound
to the JNDI lookup name jdbc/SQLServerPool and
connections established by user test04.

DataSource ds = (DataSource)
ctx.lookup("jdbc/SQLServerPool");
Connection con = ds.getConnection;

("test04", "test04");
ConnectionPoolMonitor monitor =
PooledConnectionDataSource.getMonitor

("jdbc/SQLServerPool-test04");

public static ConnectionPoolMonitor
getMonitor(String name)

Determines whether tracing is enabled. If enabled, tracing information
is sent to the PrintWriter that is passed to the setLogWriter() method
or the standard output System.out if the setLogWriter() method is not
called.

boolean isTracing()

Sets the JNDI name, which is used to look up the driver DataSource
object referenced by this PooledConnectionDataSource. The driver
DataSource object bound to this PooleConnectionDataSource, specified
by dataSourceName, is not persisted. Any changes made to the
PooledConnectionDataSource bound to the specified driver DataSource
object affect this PooledConnectionDataSource.

void setDataSourceName(String
dataSourceName)

Sets the JNDI name associated with this PooledConnectionDataSource,
specified by dataSourceName, and the driver DataSource object,
specified by dataSource, referenced by this
PooledConnectionDataSource.

The driver DataSource object, specified by dataSource, is persisted
with this PooledConnectionDataSource. Changes made to the specified
driver DataSource object after this PooledConnectionDataSource is
persisted do not affect this PooledConnectionDataSource.

void setDataSourceName(String
dataSourceName, ConnectionPoolDataSource
dataSource)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4342

Chapter 10: Connection Pool Manager

DescriptionPooledConnectionDataSource Methods

Sets the JNDI name, specified by dataSourceName, and context,
specified by ctx, to be used to look up the driver DataSource referenced
by this PooledConnectionDataSource.

The JNDI name, specified by dataSourceName, and context, specified
by ctx, are used to look up a driver DataSource object. The driver
DataSource object is persisted with this PooledConnectionDataSource.
Changes made to the driver DataSource after this
PooledConnectionDataSource is persisted do not affect this
PooledConnectionDataSource.

void setDataSourceName(String
dataSourceName, Context ctx)

Sets the description of the PooledConnectionDataSource, where
description is the description.

void setDescription(String description)

Sets the value of the initial pool size, which is the number of connections
created when the connection pool is initialized.

void setInitialPoolSize(int initialPoolSize)

Sets the value of the login timeout, where i is the login timeout, which
is the time allowed for the database login to be validated.

void setLoginTimeout(int i)

If set to true, the timestamp is logged when DataDirect Spy logging
is enabled. If set to false, the timestamp is not logged.

void setLogTimestamp(boolean value)

If set to true, the thread name is logged when DataDirect Spy logging
is enabled. If set to false, the thread name is not logged.

void setLogTname(boolean value)

Sets the writer, where printWriter is the writer to which the stream will
be printed.

void setLogWriter(PrintWriter printWriter)

Sets the value in seconds of the maximum idle time, which is the time
a connection can remain unused in the connection pool before it is
closed and removed from the pool. Zero (0) indicates no limit.

void setMaxIdleTime(int maxIdleTime)

Sets the value of the maximum pool size, which is the maximum number
of connections for each user allowed in the pool. See Understanding
the Maximum Pool Size on page 333 for more information about how
the Pool Manager implements the maximum pool size. In addition, see
Using Reauthentication with the Pool Manager on page 333 .

void setMaxPoolSize(int maxPoolSize)

343Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Connection Pool Manager Interfaces

DescriptionPooledConnectionDataSource Methods

Sets the value of the maximum pool size behavior, which is either
softCap or hardCap.

If setMaxPoolSizeBehavior(softCap), the number of active
connections may exceed the maximum pool size, but the number of
idle connections in the connection pool for each user cannot exceed
this limit. If a user requests a connection and an idle connection is
unavailable, the Pool Manager creates a new connection for that user.
When the connection is no longer needed, it is returned to the pool. If
the number of idle connections exceeds the maximum pool size, the
Pool Manager closes idle connections to enforce the maximum pool
size limit. This is the default behavior.

If setMaxPoolSizeBehavior(hardCap), the total number of active
and idle connections cannot exceed the maximum pool size. Instead
of creating a new connection for a connection request if an idle
connection is unavailable, the Pool Manager queues the connection
request until a connection is available or the request times out. This
behavior is useful if your database server has memory limitations or is
licensed for only a specific number of connections.The timeout is set
using the LoginTimeout connection property. If the connection request
times out, the driver throws an exception.

See Understanding the Maximum Pool Size on page 333 for more
information about how the Pool Manager implements the maximum
pool size.

void setMaxPoolSizeBehavior(String value)

Sets the value of the minimum pool size, which is the minimum number
of idle connections to be kept in the connection pool.

void setMinPoolSize(int minPoolSize)

Sets the value in seconds of the property cycle, which specifies how
often the pool maintenance thread wakes up and checks the connection
pool.

void setPropertyCycle(int propertyCycle)

Enables and disables reauthentication for the Pool Manager. To enable
reauthentication, use setReauthentication(enable). To disable
reauthentication, use setReauthentication(disable). See Using
Reauthentication with the Pool Manager on page 333 for more
information.

void setReauthentication(String value)

Enables or disables tracing. If set to true, tracing is enabled; if false,
it is disabled. If enabled, tracing information is sent to the PrintWriter
that is passed to the setLogWriter() method or the standard output
System.out if the setLogWriter() method is not called.

void setTracing(boolean value)

ConnectionPoolMonitor
The ConnectionPoolMonitor interface is used to return information that is useful for monitoring the status of
your connection pools.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4344

Chapter 10: Connection Pool Manager

DescriptionConnectionPoolMonitor Methods

Returns the name of the connection pool associated with the monitor.
The connection pool name has the form:

jndi_name-user_id

where:

jndi_name

is the name used for the JNDI lookup of the
PooledConnectionDataSource object from which the pooled
connection was obtained

user_id

is the user ID used to establish the connections contained in
the pool.

String getName()

Returns the number of connections that have been checked out of the
pool and are currently in use.

int getNumActive()

Returns the number of connections that are idle in the pool (available
connections).

int getNumAvailable()

Returns the initial size of the connection pool (the number of available
connections in the pool when the pool was first created).

int getInitialPoolSize()

Returns the maximum number of available connection in the connection
pool. If the number of available connections exceeds this value, the
Pool Manager removes one or multiple available connections from the
pool.

int getMaxPoolSize()

Returns the minimum number of available connections in the connection
pool. When the number of available connections is lower than this
value, the Pool Manager creates additional connections and makes
them available.

int getMinPoolSize()

Returns the current size of the connection pool, which is the total of
active connections and available connections.

int getPoolSize()

345Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Connection Pool Manager Interfaces

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4346

Chapter 10: Connection Pool Manager

11
Statement Pool Monitor

The drivers also support the DataDirect Statement Pool Monitor. You can use the Statement Pool Monitor to
load statements into and remove statements from the statement pool as well as generate information to help
you troubleshoot statement pooling performance. The Statement Pool Monitor is an integrated component of
the driver, and you can manage statement pooling directly with DataDirect-specific methods. In addition, the
Statement Pool Monitor can be enabled as a Java Management Extensions (JMX) MBean. When enabled as
a JMX MBean, the Statement Pool Monitor can be used to manage statement pooling with standard JMX API
calls, and it can easily be used by JMX-compliant tools, such as JConsole. To enable the Statement Pool
Monitor as a JMX MBean, you must register the Statement Pool Monitor MBean with the
RegisterStatementPoolMonitorMBean connection property.

For details, see the following topics:

• Using DataDirect-Specific Methods to Access the Statement Pool Monitor

• Using JMX to Access the Statement Pool Monitor

• Importing Statements into a Statement Pool

• Clearing All Statements in a Statement Pool

• Freezing and Unfreezing the Statement Pool

• Generating a Statement Pool Export File

• DataDirect Statement Pool Monitor Interfaces and Classes

347Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using DataDirect-Specific Methods to Access the
Statement Pool Monitor

To access the Statement Pool Monitor using DataDirect-specific methods, you should first enable statement
pooling. You can enable statement pooling by setting the MaxPooledStatements connection property to a value
greater than zero (0). For more information, refer to "MaxPooledStatements" in the Progress DataDirect Connect
Series for JDBC User’s Guide.

The ExtConnection.getStatementPoolMonitor() method returns an ExtStatementPoolMonitor object for the
statement pool associated with the connection. This method is provided by the ExtConnection interface in the
com.ddtek.jdbc.extensions package. If the connection does not have a statement pool, the method returns
null.

Once you have an ExtStatementPoolMonitor object, you can use the poolEntries() method of the
ExtStatementPoolMonitorMBean interface implemented by the ExtStatementPoolMonitor to return a list of
statements in the statement pool as an array.

Using the poolEntries Method
Using the poolEntries() method, your application can return all statements in the pool or filter the list based on
the following criteria:

• Statement type (prepared statement or callable statement)

• Result set type (forward only, scroll insensitive, or scroll sensitive)

• Concurrency type of the result set (read only and updateable)

The following table lists the parameters and the valid values supported by the poolEntries() method.

Table 37: poolEntries() Parameters

DescriptionValueParameter

Returns only prepared statementsExtStatementPoolMonitor.TYPE_PREPARED_STATEMENTstatementType

Returns only callable statementsExtStatementPoolMonitor.TYPE_CALLABLE_STATEMENT

Returns all statements regardless
of statement type

-1

Returns only statements with
forward-only result sets

ResultSet.TYPE_FORWARD_ONLYresultSetType

Returns only statements with scroll
insensitive result sets

ResultSet.TYPE_SCROLL_INSENSITIVE

Returns only statements with scroll
sensitive result sets

ResultSet.TYPE_SCROLL_SENSITIVE

Returns statements regardless of
result set type

-1

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4348

Chapter 11: Statement Pool Monitor

DescriptionValueParameter

Returns only statements with a
read-only result set concurrency

ResultSet.CONCUR_READ_ONLYresultSetConcurrency

Returns only statements with an
updateable result set concurrency

ResultSet.CONCUR_UPDATABLE

Returns statements regardless of
result set concurrency type

-1

The result of the poolEntries() method is an array that contains a String entry for each statement in the statement
pool using the format:

SQL_TEXT=[SQL_text];STATEMENT_TYPE=TYPE_PREPARED_STATEMENT|
TYPE_CALLABLE_STATEMENT;RESULTSET_TYPE=TYPE_FORWARD_ONLY|
TYPE_SCROLL_INSENSITIVE|TYPE_SCROLL_SENSITIVE;
RESULTSET_CONCURRENCY=CONCUR_READ_ONLY|CONCUR_UPDATABLE;
AUTOGENERATEDKEYSREQUESTED=true|false;
REQUESTEDKEYCOLUMNS=comma-separated_list

where SQL_text is the SQL text of the statement and comma-separated_list is a list of column names that will
be returned as generated keys.

For example:

SQL_TEXT=[INSERT INTO emp(id, name) VALUES(99, ?)];
STATEMENT_TYPE=Prepared Statement;RESULTSET_TYPE=Forward Only;
RESULTSET_CONCURRENCY=ReadOnly;AUTOGENERATEDKEYSREQUESTED=false;
REQUESTEDKEYCOLUMNS=id,name

Generating a List of Statements in the Statement Pool
The following code shows how to return an ExtStatementPoolMonitor object using a connection and how to
generate a list of statements in the statement pool associated with the connection.

Note: The following example is drawn from a Microsoft SQL Server use case but applies to most Progress
DataDirect drivers.

private void run(String[] args) {
Connection con = null;
PreparedStatement prepStmt = null;
String sql = null;
try {

// Create the connection and enable statement pooling
Class.forName("com.ddtek.jdbc.sqlserver.SQLServerDriver");
con = DriverManager.getConnection(

"jdbc:datadirect:sqlserver://SMITH:1440;" +
"RegisterStatementPoolMonitorMBean=true",
"maxPooledStatements=10",
"test", "test");

// Prepare a couple of statements
sql = "INSERT INTO employees (id, name) VALUES(?, ?)";
prepStmt = con.prepareStatement(sql);
prepStmt.close();
sql = "SELECT name FROM employees WHERE id = ?";
prepStmt = con.prepareStatement(sql);
prepStmt.close();

349Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using DataDirect-Specific Methods to Access the Statement Pool Monitor

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor();

System.out.println("Statement Pool - " + monitor.getName());
System.out.println("Max Size: " + monitor.getMaxSize());
System.out.println("Current Size: " + monitor.getCurrentSize());
System.out.println("Hit Count: " + monitor.getHitCount());
System.out.println("Miss Count: " + monitor.getMissCount());
System.out.println("Statements:");
ArrayList statements = monitor.poolEntries(-1, -1, -1);
Iterator itr = statements.iterator();
while (itr.hasNext()) {

String entry = (String)itr.next();
System.out.println(entry);

}
}
catch (Throwable except) {

System.out.println("ERROR: " + except);
}
finally {

if (con != null) {
try {

con.close();
}
catch (SQLException except) {}
}

}
}

In the previous code example, the PoolEntries() method returns all statements in the statement pool regardless
of statement type, result set cursor type, and concurrency type by specifying the value -1 for each parameter
as shown in the following code:

ArrayList statements = monitor.poolEntries(-1, -1, -1);

We could have easily filtered the list of statements to return only prepared statements that have a forward-only
result set with a concurrency type of updateable using the following code:

ArrayList statements = monitor.poolEntries(
ExtStatementPoolMonitor.TYPE_PREPARED_STATEMENT,
ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_UPDATABLE);

Using JMX to Access the Statement Pool Monitor
Your application cannot access the Statement Pool Monitor using JMX unless the driver registers the Statement
Pool Monitor as a JMX MBean. To enable the Statement Pool Monitor as an MBean, statement pooling must
be enabled with MaxPooledStatements, and the Statement Pool Monitor MBean must be registered using the
RegisterStatementPoolMonitorMBean connection property. For more information, refer to "MaxPooledStatements"
and "RegisterStatementPoolMonitorMBean" in the Progress DataDirect Connect Series for JDBCUser’s Guide.

When the Statement Pool Monitor is enabled, the drivers register a single MBean for each statement pool. The
registered MBean name has the following form, where monitor_name is the string returned by the
ExtStatementPoolMonitor.getName() method:

com.ddtek.jdbc.type=StatementPoolMonitor,name=monitor_name

Note: Registering the MBean exports a reference to the Statement Pool Monitor. The exported reference can
prevent garbage collection on connections if the connections are not properly closed. When garbage collection
does not take place on these connections, out of memory errors can occur.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4350

Chapter 11: Statement Pool Monitor

To return information about the statement pool, retrieve the names of all MBeans that are registered with the
com.ddtek.jdbc domain and search through the list for the StatementPoolMonitor type attribute. The following
code shows how to use the standard JMX API calls to return the state of all active statement pools in the JVM:

private void run(String[] args) {
if (args.length < 2) {

System.out.println("Not enough arguments supplied");
System.out.println("Usage: " + "ShowStatementPoolInfo hostname port");

}
String hostname = args[0];
String port = args[1];
JMXServiceURL url = null;
JMXConnector connector = null;
MBeanServerConnection server = null;
try {

url = new JMXServiceURL("service:jmx:rmi:///jndi/rmi://" +
hostname +":" + port + "/jmxrmi");

connector = JMXConnectorFactory.connect(url);
server = connector.getMBeanServerConnection();
System.out.println("Connected to JMX MBean Server at " +

args[0] + ":" + args[1]);
// Get the MBeans that have been registered with the
// com.ddtek.jdbc domain.
ObjectName ddMBeans = new ObjectName("com.ddtek.jdbc:*");
Set<ObjectName> mbeans = server.queryNames(ddMBeans, null);
// For each statement pool monitor MBean, display statistics and
// contents of the statement pool monitored by that MBean
for (ObjectName name: mbeans) {

if (name.getDomain().equals("com.ddtek.jdbc") &&
name.getKeyProperty("type")

.equals("StatementPoolMonitor")) {
System.out.println("Statement Pool - " +

server.getAttribute(name, "Name"));
System.out.println("Max Size: " +

server.getAttribute(name, "MaxSize"));
System.out.println("Current Size: " +

server.getAttribute(name, "CurrentSize"));
System.out.println("Hit Count: " +

server.getAttribute(name, "HitCount"));
System.out.println("Miss Count: " +

server.getAttribute(name, "MissCount"));
System.out.println("Statements:");
Object[] params = new Object[3];
params[0] = new Integer(-1);
params[1] = new Integer(-1);
params[2] = new Integer(-1);
String[] types = new String[3];
types[0] = "int";
types[1] = "int";
types[2] = "int";
ArrayList<String>statements = (ArrayList<String>)

server.invoke(name,
"poolEntries",
params,
types);

for (String stmt : statements) {
int index = stmt.indexOf(";");
System.out.println(" " + stmt.substring(0, index));

}
}

}
}
catch (Throwable except) {

System.out.println("ERROR: " + except);
}

}

351Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using JMX to Access the Statement Pool Monitor

Importing Statements into a Statement Pool
When importing statements into a statement pool, a statement is added to the statement pool for each statement
entry in the export file as long as a statement with the same attributes and SQL text does not already exist in
the statement pool. Existing statements that correspond to a statement entry are kept in the pool unless the
addition of new statements causes the number of statements to exceed the maximum pool size. In this case,
the driver closes and discards some statements until the pool size is shrunk to the maximum pool size.

For example, if the maximum number of statements allowed for a statement pool is 10 and the number of
statements to be imported is 20, only the last 10 imported statements are placed in the statement pool. The
other statements are created, closed, and discarded. Importing more statements than the maximum number
of statements allowed in the statement pool can negatively affect performance because the driver unnecessarily
creates some statements that are never placed in the pool.

To import statements into a statement pool:

1. Create a statement pool export file. See Statement Pool Export File Example on page 364 for an example
of a statement pool export file.

Note: The easiest way to create a statement pool export file is to generate an export file from the statement
pool associated with the connection as described in Generating a Statement Pool Export File on page 353
.

2. Edit the export file to contain statements to be added to the statement pool.

3. Import the contents of the export file to the statement pool using either of the following methods to specify
the path and file name of the export file:

• Use the ImportStatementPool property. For example:

jdbc:datadirect:db2://server1:50000;DatabaseName=jdbc;
User=test;Password=secret;ImportStatementPool=
C:\\statement_pooling\\stmt_export.txt

• Use the importStatements() method of the ExtStatementPoolMonitorMBean interface. For example:

ExtStatementPoolMonitor monitor =
((ExtConnection)

con).getStatementPoolMonitor().importStatements
("C:\\statement_pooling\\stmt_export.txt");

Clearing All Statements in a Statement Pool
To close and discard all statements in a statement pool, use the emptyPool() method of the
ExtStatementPoolMonitorMBean interface. For example:

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor().emptyPool();

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4352

Chapter 11: Statement Pool Monitor

Freezing and Unfreezing the Statement Pool
Freezing the statement pool restricts the statements in the pool to those that were in the pool at the time the
pool was frozen. For example, perhaps you have a core set of statements that you do not want replaced by
new statements when your core statements are closed. You can freeze the pool using the setFrozen() method:

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor().setFrozen(true);

Similarly, you can use the same method to unfreeze the statement pool:

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor().setFrozen(false);

When the statement pool is frozen, your application can still clear the pool and import statements into the pool.
In addition, if your application is using Java SE 6 or higher, you can use the Statement.setPoolable() method
to add or remove single statements from the pool regardless of the pool’s frozen state, assuming the pool is
not full. If the pool is frozen and the number of statements in the pool is the maximum, no statements can be
added to the pool.

To determine if a pool is frozen, use the isFrozen() method.

Generating a Statement Pool Export File
You may want to generate an export file in the following circumstances:

• To import statements to the statement pool, you can create an export file, edit its contents, and import the
file into the statement pool to import statements to the pool.

• To examine the characteristics of the statements in the statement pool to help you troubleshoot statement
pool performance.

To generate a statement pool export file, use the exportStatements() method of the
ExtStatementPoolMonitorMBean interface. For example, the following code exports the contents of the statement
pool associated with the connection to a file named stmt_export:

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor().exportStatements
("stmt_export.txt");

See the "Statement Pool Export File Example" topic for information on interpreting the contents of an export
file.

See also
Statement Pool Export File Example on page 364

DataDirect Statement Pool Monitor Interfaces and
Classes

This section describes the methods used by the DataDirect Statement Pool Monitor interfaces and classes.

353Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Freezing and Unfreezing the Statement Pool

ExtStatementPoolMonitor Class
This class is used to control and monitor a single statement pool. This class implements the
ExtStatementPoolMonitorMBean interface.

ExtStatementPoolMonitorMBean Interface

DescriptionExtStatementPoolMonitorMBean Methods

Returns the name of a Statement Pool Monitor instance
associated with the connection. The name is comprised of
the name of the driver that established the connection, and
the name and port of the server to which the Statement
Pool Monitor is connected, and the MBean ID of the
connection.

String getName()

Returns the total number of statements cached in the
statement pool.

int getCurrentSize()

Returns the hit count for the statement pool. The hit count
is the number of times a lookup is performed for a statement
that results in a cache hit. A cache hit occurs when the
Statement Pool Monitor successfully finds a statement in
the pool with the same SQL text, statement type, result set
type, result set concurrency, and requested generated key
information.

This method is useful to determine if your workload is using
the statement pool effectively. For example, if the hit count
is low, the statement pool is probably not being used to its
best advantage.

long getHitCount()

Returns the miss count for the statement pool. The miss
count is the number of times a lookup is performed for a
statement that fails to result in a cache hit. A cache hit
occurs when the Statement Pool Monitor successfully finds
a statement in the pool with the same SQL text, statement
type, result set type, result set concurrency, and requested
generated key information.

This method is useful to determine if your workload is using
the statement pool effectively. For example, if the miss
count is high, the statement pool is probably not being used
to its best advantage.

long getMissCount()

Returns the maximum number of statements that can be
stored in the statement pool.

int getMaxSize()

Changes the maximum number of statements that can be
stored in the statement pool to the specified value.

int setMaxSize(int value)

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4354

Chapter 11: Statement Pool Monitor

DescriptionExtStatementPoolMonitorMBean Methods

Closes and discards all the statements in the statement
pool.

void emptyPool()

Resets the hit and miss counts to zero (0). See long
getHitCount() and long getMissCount() for more information.

void resetCounts()

Returns a list of statements in the pool. The list is an array
that contains a String entry for each statement in the
statement pool.

ArrayList poolEntries(int statementType, int resultSetType,
int resultSetConcurrency)

Exports statements from the statement pool into the
specified file. The file format contains an entry for each
statement in the statement pool.

void exportStatements(File file_object)

Exports statements from statement pool into the specified
file. The file format contains an entry for each statement in
the statement pool.

void exportStatements(String file_name)

Imports statements from the specified File object into the
statement pool.

void importStatements(File file_object)

Imports statements from the specified file into the statement
pool.

void importStatements(String file_name)

Returns whether the state of the statement pool is frozen.
When the statement pool is frozen, the statements that can
be stored in the pool are restricted to those that were in the
pool at the time the pool was frozen. Freezing a pool is
useful if you have a core set of statements that you do not
want replaced by other statements when the core
statements are closed.

boolean isFrozen()

setFrozen(true) freezes the statement pool.
setFrozen(false) unfreezes the statement pool. When
the statement pool is frozen, the statements that can be
stored in the pool are restricted to those that were in the
pool at the time the pool was frozen. Freezing a pool is
useful if you have a core set of statements that you do not
want replaced by other statements when the core
statements are closed.

void setFrozen(boolean)

355Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect Statement Pool Monitor Interfaces and Classes

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4356

Chapter 11: Statement Pool Monitor

12
Troubleshooting

This section provides information that can help you troubleshoot problems when they occur.

For details, see the following topics:

• Troubleshooting Your Application

• Troubleshooting Connection Pooling

• Troubleshooting Statement Pooling

• Using Java Logging (Salesforce)

• Configuring Logging

Troubleshooting Your Application
To help you troubleshoot any problems that occur with your application, you can use DataDirect Spy to log
detailed information about calls issued by the drivers on behalf of your application. When you enable DataDirect
Spy for a connection, you can customize DataDirect Spy logging by setting one or multiple options. See Tracking
JDBC Calls with DataDirect Spy on page 325 for information about using DataDirect Spy and instructions on
enabling and customizing logging.

357Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Turning On and Off DataDirect Spy Logging
Once DataDirect Spy logging is enabled for a connection, you can turn on and off the logging at runtime using
the setEnableLogging() method in the com.ddtek.jdbc.extensions.ExtLogControl interface. When DataDirect
Spy logging is enabled, all Connection objects returned to an application provide an implementation of the
ExtLogControl interface.

For example, the following code turns off logging using setEnableLogging(false):

import com.ddtek.jdbc.extensions.*

// Get Database Connection
Connection con = DriverManager.getConnection

("jdbc:datadirect:sqlserver://server1:1433;User=TEST;Password=secret;
SpyAttributes=(log=(file)/tmp/spy.log");

((ExtLogControl) con).setEnableLogging(false);
...

The setEnableLogging() method only turns on and off logging if DataDirect Spy logging has already been
enabled for a connection; it does not set or change DataDirect Spy attributes. See Enabling DataDirect Spy
on page 325 for information about enabling and customizing DataDirect Spy logging.

DataDirect Spy Log Example
This section provides information to help you understand the content of your own DataDirect Spy logs. For
example, suppose your application executes the following code and performs some operations:

Class.forName("com.ddtek.jdbc.sqlserver.SQLServerDriver");
DriverManager.getConnection("jdbc:datadirect:sqlserver:// nc-myserver\
\sqlserver2005;useServerSideUpdatableCursors=true;resultsetMetaDataOptions=1;
sendStringParametersAsUnicode=true;alwaysReportTriggerResults=false;
spyAttributes=(log=(file)c:\\temp\\spy.log)","test04", "test04");

The log file generated by DataDirect Spy would look similar to the following example. Notes provide explanations
for the referenced text.

spy>> Connection[1].getMetaData()
spy>> OK (DatabaseMetaData[1])

spy>> DatabaseMetaData[1].getURL()
spy>> OK
(jdbc:datadirect:sqlserver://nc-myserver\sqlserver2005:1433;CONNECTIONRETRYCOUNT=5;
RECEIVESTRINGPARAMETERTYPE=nvarchar;ALTERNATESERVERS=;DATABASENAME=;PACKETSIZE=16;INITIALIZATIONSTRING=;
ENABLECANCELTIMEOUT=false;BATCHPERFORMANCEWORKAROUND=false;AUTHENTICATIONMETHOD=auto;
SENDSTRINGPARAMETERSASUNICODE=true;LOGINTIMEOUT=0;WSID=;SPYATTRIBUTES=(log=(file)c:\temp\spy.log);
RESULTSETMETADATAOPTIONS=1;ALWAYSREPORTTRIGGERRESULTS=false;TRANSACTIONMODE=implicit;
USESERVERSIDEUPDATABLECURSORS=true;SNAPSHOTSERIALIZABLE=false;JAVADOUBLETOSTRING=false;
SELECTMETHOD=direct;LOADLIBRARYPATH=;CONNECTIONRETRYDELAY=1;INSENSITIVERESULTSETBUFFERSIZE=2048;
MAXPOOLEDSTATEMENTS=0;DESCRIBEPARAMETERS=noDescribe;CODEPAGEOVERRIDE=;NETADDRESS=000000000000;
PROGRAMNAME=;LOADBALANCING=false;HOSTPROCESS=0)69

spy>> DatabaseMetaData[1].getDriverName()
spy>> OK (SQLServer)

spy>> DatabaseMetaData[1].getDriverVersion()
spy>> OK (3.60.0 (000000.000000.000000))

spy>> DatabaseMetaData[1].getDatabaseProductName()
spy>> OK (Microsoft SQL Server)

spy>> DatabaseMetaData[1].getDatabaseProductVersion()
spy>> OK (Microsoft SQL Server Yukon - 9.00.1399)

69 The combination of the URL specified by the application and the default values of all connection properties not specified.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4358

Chapter 12: Troubleshooting

spy>> Connection Options : 70

spy>> CONNECTIONRETRYCOUNT=5
spy>> RECEIVESTRINGPARAMETERTYPE=nvarchar
spy>> ALTERNATESERVERS=
spy>> DATABASENAME=
spy>> PACKETSIZE=16
spy>> INITIALIZATIONSTRING=
spy>> ENABLECANCELTIMEOUT=false
spy>> BATCHPERFORMANCEWORKAROUND=false
spy>> AUTHENTICATIONMETHOD=auto
spy>> SENDSTRINGPARAMETERSASUNICODE=true
spy>> LOGINTIMEOUT=0
spy>> WSID=
spy>> SPYATTRIBUTES=(log=(file)c:\temp\spy.log)
spy>> RESULTSETMETADATAOPTIONS=1
spy>> ALWAYSREPORTTRIGGERRESULTS=false
spy>> TRANSACTIONMODE=implicit
spy>> USESERVERSIDEUPDATABLECURSORS=true
spy>> SNAPSHOTSERIALIZABLE=false
spy>> JAVADOUBLETOSTRING=false
spy>> SELECTMETHOD=direct
spy>> LOADLIBRARYPATH=
spy>> CONNECTIONRETRYDELAY=1
spy>> INSENSITIVERESULTSETBUFFERSIZE=2048
spy>> MAXPOOLEDSTATEMENTS=0
spy>> DESCRIBEPARAMETERS=noDescribe
spy>> CODEPAGEOVERRIDE=
spy>> NETADDRESS=000000000000
spy>> PROGRAMNAME=
spy>> LOADBALANCING=false
spy>> HOSTPROCESS=0
spy>> Driver Name = SQLServer 71

spy>> Driver Version = 3.60.0 (000000.000000.000000) 72

spy>> Database Name = Microsoft SQL Server 73

spy>> Database Version = Microsoft SQL Server Yukon - 9.00.1399 74

spy>> Connection[1].getWarnings()
spy>> OK 75spy>> Connection[1].createStatement
spy>> OK (Statement[1])

spy>> Statement[1].executeQuery(String sql)
spy>> sql = select empno,ename,job from emp where empno=7369
spy>> OK (ResultSet[1]) 76

spy>> ResultSet[1].getMetaData()
spy>> OK (ResultSetMetaData[1]) 77

spy>> ResultSetMetaData[1].getColumnCount()
spy>> OK (3)78

spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 1
spy>> OK (EMPNO)79spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 2
spy>> OK (ENAME)80

spy>> ResultSetMetaData[1].getColumnLabel(int column)
spy>> column = 3
spy>> OK (JOB)81spy>> ResultSet[1].next()
spy>> OK (true)82

70 The combination of the connection properties specified by the application and the default values of all connection properties not specified.
71 The name of the driver.
72 The version of the driver.
73 The name of the database server to which the driver connects.
74 The version of the database to which the driver connects.
75 The application checks to see if there are any warnings. In this example, no warnings are present.
76

The statement select empno,ename,job from emp where empno=7369 is created.
77 Some metadata is requested.
78 Some metadata is requested.
79 Some metadata is requested.
80 Some metadata is requested.
81 Some metadata is requested.
82 The first row is retrieved and the application retrieves the result values.

359Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Troubleshooting Your Application

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 1
spy>> OK (7369) 83

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 2
spy>> OK (SMITH) 84

spy>> ResultSet[1].getString(int columnIndex)
spy>> columnIndex = 3
spy>> OK (CLERK) 85

spy>> ResultSet[1].next()
spy>> OK (false) 86spy>> ResultSet[1].close()
spy>> OK 87

spy>> Connection[1].close()
spy>> OK 88

Troubleshooting Connection Pooling
Connection pooling allows connections to be reused rather than created each time a connection is requested.
If your application is using connection pooling through the DataDirect Connection Pool Manager, you can
generate a trace file that shows all the actions taken by the Pool Manager. See Connection Pool Manager on
page 331 for information about using the Pool Manager.

Enabling Pool Manager Tracing
You can enable Pool Manager logging by calling setTracing(true) on the PooledConnectionDataSource
connection. To disable tracing, call setTracing(false) on the connection.

By default, the DataDirect Connection Pool Manager logs its pool activities to the standard output System.out.
You can change where the Pool Manager trace information is written by calling the setLogWriter() method on
the PooledConnectionDataSource connection.

Pool Manager Trace File Example
The following example shows a DataDirect Connection Pool Manager trace file. Notes provide explanations
for the referenced text to help you understand the content of your own Pool Manager trace files.

jdbc/SQLServerNCMarkBPool: *** ConnectionPool Created
(jdbc/SQLServerNCMarkBPool,
com.ddtek.jdbcx.sqlserver.SQLServerDataSource@1835282, 5, 5, 10, scott)89

83 The first row is retrieved and the application retrieves the result values.
84 The first row is retrieved and the application retrieves the result values.
85 The first row is retrieved and the application retrieves the result values.
86 The application attempts to retrieve the next row, but only one row was returned for this query.
87 After the application has completed retrieving result values, the result set is closed.
88 The application finishes and disconnects.
89 The Pool Manager creates a connection pool. In this example, the characteristics of the connection pool are shown using the following format:

(JNDI_name,DataSource_class,initial_pool_size,min_pool_size,max_pool_size,
user)

where:

JNDI_name is the JNDI name used to look up the connection pool (for example, jdbc/SQLServerNCMarkBPool).

DataSource_class is the DataSource class associated with the connection pool (for example com.ddtek.jdbcx.sqlserver.SQLServerDataSource).

initial_pool_size is the number of physical connections created when the connection pool is initialized (for example, 5).

min_pool_size is the minimum number of physical connections be kept open in the connection pool (for example, 5).

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4360

Chapter 12: Troubleshooting

jdbc/SQLServerNCMarkBPool: Number pooled connections = 0.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Enforced minimum!90

NrFreeConnections was: 0
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Reused free connection.91

jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 4.

jdbc/SQLServerNCMarkBPool: Reused free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 3.

jdbc/SQLServerNCMarkBPool: Reused free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 2.

jdbc/SQLServerNCMarkBPool: Reused free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 1.

jdbc/SQLServerNCMarkBPool: Reused free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.92

jdbc/SQLServerNCMarkBPool: Number pooled connections = 6.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 7.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 8.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 9.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Created new connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.93

jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 1.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 2.

max_pool_size is the maximum number of physical connections allowed within a single pool at any one time. When this number is reached,
additional connections that would normally be placed in a connection pool are closed (for example, 10).

user is the name of the user establishing the connection (for example, scott).
90 The Pool Manager checks the pool size. Because the minimum pool size is five connections, the Pool Manager creates new connections to

satisfy the minimum pool size.
91 The driver requests a connection from the connection pool. The driver retrieves an available connection.
92 The driver requests a connection from the connection pool. Because a connection is unavailable, the Pool Manager creates a new connection

for the request.
93 A connection is closed by the application and returned to the connection pool.

361Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Troubleshooting Connection Pooling

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 3.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 4.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 6.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 7.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 8.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 9.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Connection was closed and added to the cache.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 11.

jdbc/SQLServerNCMarkBPool: Enforced minimum!94

NrFreeConnections was: 11
jdbc/SQLServerNCMarkBPool: Number pooled connections = 11.
jdbc/SQLServerNCMarkBPool: Number free connections = 11.

jdbc/SQLServerNCMarkBPool: Enforced maximum!95

NrFreeConnections was: 11
jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Enforced minimum!
NrFreeConnections was: 10
jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Enforced maximum!
NrFreeConnections was: 10
jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Enforced minimum!
NrFreeConnections was: 10
jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Enforced maximum!
NrFreeConnections was: 10

94 The Pool Manager checks the pool size. Because the number of connections in the connection pool is greater than the minimum pool size,
five connections, no action is taken by the Pool Manager.

95 The Pool Manager checks the pool size. Because the number of connections in the connection pool is greater than the maximum pool size,
10 connections, a connection is closed and discarded from the pool.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4362

Chapter 12: Troubleshooting

jdbc/SQLServerNCMarkBPool: Number pooled connections = 10.
jdbc/SQLServerNCMarkBPool: Number free connections = 10.

jdbc/SQLServerNCMarkBPool: Dumped free connection.96

jdbc/SQLServerNCMarkBPool: Number pooled connections = 9.
jdbc/SQLServerNCMarkBPool: Number free connections = 9.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 8.
jdbc/SQLServerNCMarkBPool: Number free connections = 8.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 7.
jdbc/SQLServerNCMarkBPool: Number free connections = 7.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 6.
jdbc/SQLServerNCMarkBPool: Number free connections = 6.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 4.
jdbc/SQLServerNCMarkBPool: Number free connections = 4.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 3.
jdbc/SQLServerNCMarkBPool: Number free connections = 3.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 2.
jdbc/SQLServerNCMarkBPool: Number free connections = 2.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 1.
jdbc/SQLServerNCMarkBPool: Number free connections = 1.

jdbc/SQLServerNCMarkBPool: Dumped free connection.
jdbc/SQLServerNCMarkBPool: Number pooled connections = 0.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

jdbc/SQLServerNCMarkBPool: Enforced minimum!97

NrFreeConnections was: 0
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Enforced maximum!
NrFreeConnections was: 5
jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Closing a pool of the group
jdbc/SQLServerNCMarkBPool98

jdbc/SQLServerNCMarkBPool: Number pooled connections = 5.
jdbc/SQLServerNCMarkBPool: Number free connections = 5.

jdbc/SQLServerNCMarkBPool: Pool closed99

96 The Pool Manager detects that a connection was idle in the connection pool longer than the maximum idle timeout. The idle connection is
closed and discarded from the pool.

97 The Pool Manager detects that the number of connections dropped below the limit set by the minimum pool size, five connections. The Pool
Manager creates new connections to satisfy the minimum pool size.

98 The Pool Manager closes one of the connection pools in the pool group. A pool group is a collection of pools created from the same
PooledConnectionDataSource call. Different pools are created when different user IDs are used to retrieve connections from the pool. A pool
group is created for each user ID that requests a connection. In our example, because only one user ID was used, only one pool group is
closed.

99 The Pool Manager closed all the pools in the pool group. The connection pool is closed.

363Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Troubleshooting Connection Pooling

jdbc/SQLServerNCMarkBPool: Number pooled connections = 0.
jdbc/SQLServerNCMarkBPool: Number free connections = 0.

Troubleshooting Statement Pooling
Similar to connection pooling, statement pooling provides performance gains for applications that execute the
same SQL statements multiple times in the life of the application. The DataDirect Statement Pool Monitor
provides the following functionality to help you troubleshoot problems that may occur with statement pooling:

• You can generate a statement pool export file that shows you all statements in the statement pool. Each
statement pool entry in the file includes information about statement characteristics such as the SQL text
used to generate the statement, statement type, result set type, and result set concurrency type.

• You can use the following methods of the ExtStatementPoolMonitorMBean interface to return useful
information to determine if your workload is using the statement pool effectively:

• The getHitCount() method returns the hit count for the statement pool. The hit count should be high for
good performance.

• The getMissCount() method returns the miss count for the statement pool. The miss count should be
low for good performance.

See Statement Pool Monitor on page 347 for more information about using the Statement Pool Monitor.

Generating a Statement Pool Export File
You can generate an export file by calling the exportStatements() method of the ExtStatementPoolMonitorMBean
interface. For example, the following code exports the contents of the statement pool associated with the
connection to a file named stmt_export:

ExtStatementPoolMonitor monitor =
((ExtConnection) con).getStatementPoolMonitor();

exportStatements(stmt_export.txt)

Statement Pool Export File Example
The following example shows a sample export file. The footnotes provide explanations for the referenced text
to help you understand the content of your own statement pool export files.

[DDTEK_STMT_POOL]100

VERSION=1101

[STMT_ENTRY]102

SQL_TEXT=[
INSERT INTO emp(id, name) VALUES(?,?)
]
STATEMENT_TYPE=Prepared Statement
RESULTSET_TYPE=Forward Only

100 A string that identifies the file as a statement pool export file.
101 The version of the export file.
102 The first statement pool entry. Each statement pool entry lists the SQL text, statement type, result set type, result set concurrency type, and

generated keys information.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4364

Chapter 12: Troubleshooting

RESULTSET_CONCURRENCY=Read Only
AUTOGENERATEDKEYSREQUESTED=false
REQUESTEDKEYCOLUMNS=

[STMT_ENTRY]103

SQL_TEXT=[
INSERT INTO emp(id, name) VALUES(99,?)
]
STATEMENT_TYPE=Prepared Statement
RESULTSET_TYPE=Forward Only
RESULTSET_CONCURRENCY=Read Only
AUTOGENERATEDKEYSREQUESTED=false
REQUESTEDKEYCOLUMNS=id,name

Using Java Logging (Salesforce)
The Salesforce driver provides a flexible and comprehensive logging mechanism that allows logging to be
incorporated seamlessly with the logging of your own application or allows logging to be enabled and configured
independently from the application. The logging mechanism can be instrumental in investigating and diagnosing
issues. It also provides valuable insight into the type and number of operations requested by the application
from the driver and requested by the driver from the remote data source. This information can help you tune
and optimize your application.

Logging Components
The Salesforce driver uses the Java Logging API to configure the loggers (individual logging components)
used by the driver. The Java Logging API is built into the JVM.

The Java Logging API allows applications or components to define one or more named loggers. Messages
written to the loggers can be given different levels of importance. For example, errors that occur in the driver
can be written to a logger at the CONFIG level, while progress or flow information may be written to a logger
at the FINE or FINER level. Each logger used by the driver can be configured independently. The configuration
for a logger includes what level of log messages are written, the location to which they are written, and the
format of the log message.

The Java Logging API defines the following levels:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Note: Log messages logged by the driver only use the CONFIG, FINE, FINER, and FINEST logging levels.

103 The next statement pool entry.

365Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Using Java Logging (Salesforce)

Setting the log threshold of a logger to a particular level causes the logger to write log messages of that level
and higher to the log. For example, if the threshold is set to FINE, the logger writes messages of levels FINE.
CONFIG, INFO, WARNING, and SEVERE to its log. Messages of level FINER or FINEST are not written to
the log.

The driver exposes loggers for the following functional areas:

• JDBC API

• SQL Engine

• Web service adapter

JDBC API Logger

Name
com.ddtek.jdbc.cloud.level

Purpose
Logs the JDBC calls made by the application to the driver and the responses from the driver back to the
application. DataDirect Spy is used to log the JDBC calls.

Message Levels
FINER - Calls to the JDBC methods are logged at the FINER level. The value of all input parameters passed
to these methods and the return values passed from them are also logged, except that input parameter or
result data contained in InputStream, Reader, Blob, or Clob objects are not written at this level.

FINEST - In addition to the same information logged by the FINER level, input parameter values and return
values contained in InputStream, Reader, Blob and Clob objects are written at this level.

OFF - Calls to the JDBC methods are not logged.

SQL Engine Logger

Name
com.ddtek.cloud.sql.level

Purpose
Logs the operations that the SQL engine performs while executing a query. Operations include preparing a
statement to be executed, executing the statement, and fetching the data, if needed. These are internal
operations that do not necessarily directly correlate with Web service calls made to the remote data source.

Message Levels
CONFIG - Any errors or warnings detected by the SQL engine are written at this level.

FINE - In addition to the same information logged by the CONFIG level, SQL engine operations are logged at
this level. In particular, the SQL statement that is being executed is written at this level.

FINER - In addition to the same information logged by the CONFIG and FINE levels, data sent or received in
the process of performing an operation is written at this level.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4366

Chapter 12: Troubleshooting

Web Service Adapter Logger

Name
com.ddtek.cloud.adapter.level

Purpose
Logs the Web service calls the driver makes to the remote data source and the responses it receives from the
remote data source.

Message Levels
CONFIG - Any errors or warnings detected by the Web service adapter are written at this level.

FINE - In addition to the same information logged by the CONFIG level, information about Web service calls
made by the Web service adapter and responses received by the Web service adapter are written at this level.
In particular, the Web service calls made to execute the query and the calls to fetch or send the data are logged.
The log entries for the calls to execute the query include the Salesforce-specific query being executed. The
actual data sent or fetched is not written at this level.

FINER - In addition to the same information logged by the CONFIG and FINE levels, this level provides additional
information.

FINEST - In addition to the same information logged by the CONFIG, FINE, and FINER levels, data associated
with the Web service calls made by the Web service adapter is written.

Configuring Logging
You can configure logging using a standard Java properties file in either of the following ways:

• Using the properties file that is shipped with your JVM. See Using the JVM on page 367 for details.

• Using the driver. See Using the Driver on page 368 for details.

Using the JVM
If you want to configure logging using the properties file that is shipped with your JVM, use a text editor to
modify the properties file in your JVM. Typically, this file is named logging.properties and is located in the
JRE/lib subdirectory of your JVM. The JRE looks for this file when it is loading.

You can also specify which properties file to use by setting the java.util.logging.config.file system property. At
a command prompt, enter:

java -Djava.util.logging.config.file=properties_file

where:

properties_file

is the name of the properties file you want to load.

367Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Configuring Logging

Using the Driver
If you want to configure logging using the driver, you can use either of the following approaches:

• Use a single properties file for all Salesforce connections.

• Use a different properties file for each embedded database. For example, if you have two embedded
databases (johnsmith.xxx and pattijohnson.xxx, for example), you can load one properties file for the
johnsmith.xxx database and load another properties file for the pattijohnson.xxx database.

Note: By default, the name of the embedded database is the user ID specified for the connection. You can
specify the name of the embedded database using the DatabaseName connection property. Refer to the
"Salesforce Driver" section of the DataDirect Connect Series for JDBC User’s Guide for details about using
the DatabaseName connection property.

By default, the driver looks for the file named ddlogging.properties in the current working directory to load for
all Salesforce connections.

If a property's file is specified for the LogConfigFile connection property, the driver uses the following process
to determine which file to load:

1. The driver looks for the file specified by the LogConfigFile property.

2. If the driver cannot find the file in Step 1 on page 368, it looks for a properties file named
database_name.logging.properties in the directory containing the embedded database for the connection,
where database_name is the name of the embedded database.

3. If the driver cannot find the file in Step 2 on page 368, it looks for a properties file named ddlogging.properties
in the current working directory.

4. If the driver cannot find the file in Step 3 on page 368 , it abandons its attempt to load a properties file.

If any of these files exist, but the logging initialization fails for some reason while using that file, the driver writes
a warning to the standard output (System.out), specifying the name of the properties file being used.

Refer to "Salesforce Driver" in the DataDirect Connect Series for JDBC User’s Guide for details about using
the LogConfigFile connection property.

A sample properties file is installed in the install_dir/testforjdbc and
installdir/Examples/SforceSamples directories, where:

installdir

is your product installation directory.

The file is named ddlogging.properties.You can copy this file from either location to the current working
directory of your application or embedded database directory, and modify it using a text editor for your needs.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4368

Chapter 12: Troubleshooting

Glossary

authentication
The process of identifying a user, typically based on a user ID and password. Authentication ensures that the
user is who they claim to be. See also client authentication, NTLM authentication, OS authentication, and user
ID/password authentication.

bulk load
The process of sending large numbers of rows of data to the database in a continuous stream instead of in
numerous smaller database protocol packets. This process also is referred to as bulk copy.

client authentication
Client authentication uses the user ID and password of the user logged onto the system on which the driver is
running to authenticate the user to the database. The database server depends on the client to authenticate
the user and does not provide additional authentication. See also authentication.

client load balancing
Client load balancing distributes new connections in a computing environment so that no one server is
overwhelmed with connection requests.

connection pooling
Connection pooling allows you to reuse connections rather than create a new one every time a driver needs
to establish a connection to the database. Connection pooling manages connection sharing across different
user requests to maintain performance and reduce the number of new connections that must be created. See
also DataDirect Connection Pool Manager.

connection retry
Connection retry defines the number of times the driver attempts to connect to the primary and, if configured,
alternate database servers after an initial unsuccessful connection attempt. Connection retry can be an important
strategy for system recovery.

connection URL
A connection URL is a string passed by an application to the Driver Manager that contains information required
to establish a connection. See also Driver Manager.

DataDirect Connection Pool Manager
The DataDirect Connection Pool Manager is a component shipped with Progress DataDirect drivers that allows
applications to use connection pooling.

369Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

DataDirect DB2 Package Manager
A Java graphical tool shipped with DataDirect Connect Series for JDBC for creating, dropping, and replacing
DB2 packages for DB2.

DataDirect Spy
DataDirect Spy allows you to track and log detailed information about JDBC calls made by the drivers at runtime.
This functionality is built into the drivers.

DataDirect Test
DataDirect Test is a menu-driven component shipped with Progress DataDirect drivers that helps you debug
your applications and learn how to use the drivers. DataDirect Test displays the results of all JDBC function
calls in one window, while displaying fully commented, Java JDBC code in an alternate window.

data source
A data source is a DataSource object that provides the connection information needed to connect to a database.
The main advantage of using a data source is that it works with the Java Naming Directory Interface (JNDI)
naming service, and it is created and managed apart from the applications that use it.

Driver Manager
The main purpose of the Driver Manager is to load drivers for the application. The Driver Manager also processes
JDBC initialization calls and maps data sources to a specific driver.

failover
Failover allows an application to connect to an alternate, or backup, database server. Progress DataDirect
drivers provide different levels of failover: connection failover, extended connection failover, and select failover.

index
A database structure used to improve the performance of database activity. A database table can have one or
more indexes associated with it.

isolation level
An isolation level represents a particular locking strategy employed in the database system to improve data
consistency. The higher the isolation level number, the more complex the locking strategy behind it. The isolation
level provided by the database determines how a transaction handles data consistency.

The American National Standards Institute (ANSI) defines four isolation levels:

• Read uncommitted (0)

• Read committed (1)

• Repeatable read (2)

• Serializable (3)

J2EE
J2EE (Java 2 Platform, Enterprise Edition) technology and its component-based model simplify enterprise
development and deployment. The J2EE platform manages the infrastructure and supports the Web services
to enable development of secure, robust and interoperable business applications. Also known as Java EE
(Java Platform, Enterprise Edition).

JDBC data source
See data source.

JNDI
The Java Naming and Directory Interface (JNDI) is a standard extension to the Java platform, providing Java
technology-enabled applications with a unified interface to multiple naming and directory services in the
enterprise. As part of the Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services. Developers can now build powerful and portable directory-enabled
applications using this industry standard.

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4370

Glossary

JTA
JTA (Java Transaction API) specifies standard Java interfaces between a transaction manager and the parties
involved in a distributed transaction system: the resource manager, the application server, and the transactional
applications.

Kerberos
Kerberos is an OS authentication protocol that provides authentication using secret key cryptography. See
also authentication and OS authentication.

load balancing
See client load balancing.

locking level
Locking is a database operation that restricts a user from accessing a table or record. Locking is used in
situations where more than one user might try to use the same table at the same time. By locking the table or
record, the system ensures that only one user at a time can affect the data.

NTLM authentication
NTLM (NT LAN Manager) is an authentication protocol that provides security for connections between Windows
clients and servers. See also authentication and OS authentication.

OS authentication
OS authentication can take advantage of the user name and password maintained by the operating system to
authenticate users to the database or use another set of user credentials specified by the application. By
allowing the database to share the user name and password used for the operating system, users with a valid
operating system account can log into the database without supplying a user name and password. See also
authentication, Kerberos authentication, and NTLM authentication.

reauthentication
The process of switching the user associated with a connection to another user to help minimize the number
of connections required in a connection pool.

resource adapter
A resource adapter is a system-level software driver used by an application server to connect to an Enterprise
Information Service (EIS). The resource adapter communicates with the server to provide the underlying
transaction, security, and connection pooling mechanisms.

Secure Socket Layer
Secure Socket Layer (SSL) is an industry-standard protocol for sending encrypted data over database
connections. SSL secures the integrity of your data by encrypting information and providing SSL client/SSL
server authentication. See also SSL client/server authentication.

SSL client and server authentication
SSL (Secure Socket Layer) works by allowing the client and server to send each other encrypted data that
only they can decrypt. SSL negotiates the terms of the encryption in a sequence of events known as the SSL
handshake. The handshake involves the following types of authentication:

• SSL server authentication requires the server to authenticate itself to the client.

• SSL client authentication is optional and requires the client to authenticate itself to the server after the server
has authenticated itself to the client.

See also Secure Socket Layer.

Unicode
A standard for representing characters as integers. Unlike ASCII, which uses 7 bits for each character, Unicode
uses 16 bits, which means that it can represent more than 65,000 unique characters. This is necessary for
many languages, such as Greek, Chinese, and Japanese.

user ID and password authentication
User ID and password authentication authenticates the user to the database using a database user name and
password. See also authentication.

371Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Glossary

Index

A
accessing the DataDirect Statement Pool Monitor 350
Add clause (for local tables) 105
Add clause (for remote tables) 103
aggregate functions 138
Alter Cache (EXT) 98
Alter Index 100
Alter Sequence 100
Alter Session (EXT) 101
Alter Table 102
Apache Hive, driver for

between clause 89
column name qualification 89
From clause 89
Group By clause 90
Having clause 90
Insert statement 88
Order By clause 90
restrictions 95
SQL statement support 87
subqueries 91

Apache Hive, getTypeInfo() 244
application

connection pooling 12
DataDirect Spy, using to troubleshoot 357
troubleshooting problems 357

arithmetic operators 92, 151
Array interface, methods 18
attributes, DataDirect Spy 328
auto generated keys

example, retrieving 273
performance optimization 273

Autocommit mode 274

B
batch inserts and updates

batch execution on a prepared statement with
DataDirect Test 304
using instead of prepared statements 271

binary
literals 150
operators 150

Blob interface, methods 18
Blobs

retrieving with DataDirect Test 319

C
Call Limit clause 113

CallableStatement interface, methods 19
changing the maximum pool size behavior 333
character operators 92
character string literals 149
checking version of DataDirect Connection Pool Manager
334
Checkpoint 108
clearing statements in the statement pool 352
Clob interface, methods 30
Clobs

retrieving with DataDirect Test 319
closing the connection pool 339
column

definition 122
names 148

com.ddtek.jdbc.extensions package 12, 71
committing transactions 274
comparison operators 151
components, Java logging (Salesforce) 365
concatenation operator 92, 151
conditions 159
connecting

DataDirect Test
using a data source 293
using driver/database selection 294

example
Driver Manager and DataDirect Spy 326

using connection pool 338
using DataDirect Test 293

Connection interface, methods 31
connection management 274
Connection object

ExtLogControl interface 358
managing connections 274
transaction model 275

connection pool, See connection pooling
Connection Pool Monitor 342
connection pooling

connection pool
closing 339
configuring 332
connecting using 338
creating 335–336
PooledConnectionDataSource object, creating
336

Connection Pool Monitor 342
driver DataSource object for connection pooling,
creating 335
example

DataDirect Connection Pool Manager trace file
360

373Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Index

connection pooling (continued)
example (continued)

pooled data source 335
performance optimization 274
PooledConnectionDataSource object, creating 336

ConnectionEventListener interface, methods 36
ConnectionPoolDataSource interface, methods 36
ConnectionPoolMonitor interface, methods 344
constants

Apache Hive, driver for 91
constraint definition 119, 123
conventions, typographical 13
copyright 3
correlated subqueries 161
Create Cache (EXT) 108
Create Index 115
Create Sequence 115
Create Table 116
Create View 127
creating

connection pool 336
driver DataSource object for connection pooling 335
PooledConnectionDataSource object 336

cursors
choosing 272

D
data sources

creating
driver DataSource object for connection pooling
335
PooledConnectionDataSource object 336

data types, choosing for performance 269
database

table characteristics, using dummy query to
determine 267

database metadata
retrieving with DataDirect Test 300

DatabaseMetaData interface (Salesforce) 73
DatabaseMetaData interface, methods 36
DataDirect Connection Pool Manager

checking the version 334
trace file

example 360
using 360

tracing, enabling 335, 360
using reauthentication with 333

DataDirect Spy
attributes 328
enabling

using JDBC data sources 327
using JDBC Driver Manager 326

example
JDBC data source connection 327
JDBC Driver Manager connection 326

DataDirect Spy (continued)
logging

generating a log 357
JDBC calls to System.out 328
log example 358
turning on and off 358

setEnableLogging() method 358
SpyAttributes connection property, using 326

DataDirect Statement Pool Monitor
accessing

using the JMX API 350
classes and interfaces 353
using 12

DataDirect Test
batch execution 304
configuring 292
connecting with 293
database metadata, retrieving 300
deleting rows 311
executing

Select statement 296
executing prepared statement 297
inserting rows 311, 313
LOB support 319
ParameterMetaData, returning 307
result set, scrolling through 302
savepoints, establishing 308
starting 292
tutorial 291
updatable result sets 311
updating rows 311, 316
using 291

DataSource interface, methods 45
DataSource object

connection pooling
creating DataSource object for 335
obtaining a connection 331
referencing for 336, 340

date, time, timestamp escape sequences 278
date/time literals 150
DB2

getTypeInfo() method 164
DDBulkLoad interface, methods 73
Delete 128
deleting rows

with DataDirect Test 311
documentation library 13
Driver interface, methods 45
driver, DataSource object for connection pooling 335
Drop Cache (EXT) 129
Drop clause 104, 106
Drop Index 129
Drop Sequence 130
Drop Table 131
Drop View 131

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4374

Index

dummy query, using to determine table characteristics
267

E
Enabled clause 112
escape sequences

date, time, and timestamp 278
LIKE escape character for wildcards 289
outer join 287
procedure call 289

example
data source for connection pooling 335
DataDirect Spy

JDBC data source connection 327
JDBC Driver Manager connection 326
log 358

date, time, and timestamp escape sequence 278
Driver Manager, using to connect 326
outer join escape sequence 287
scalar functions 278
trace file, DataDirect Connection Pool Manager 360

Except operator 143
EXISTS predicate 160
Explain Plan 132
export file for statement pool

example 364
generating 353

ExtConnection interface, methods 80
ExtDatabaseMetaData interface, methods 85
extensions for metadata (Salesforce) 73
external ID column, specifying 133
ExtLogControl class, methods 85
ExtStatementPoolMonitor class 354
ExtStatementPoolMonitorMBean interface 354

F
Filter clause 114
Foreign Key clause 123
forward-only cursor

performance implications 272
freezing the statement pool 353
From clause 139
functions

Apache Hive 93
Salesforce 154

G
generating statement pool export file 364
getBestRowIdentifier() method 275
getBlob() method 268
getClob() method 268
getObject() method 272

getting network timeout (SQL Server) 81
getTypeInfo() method

Apache Hive 244
DB2 164
Greenplum 249
Informix 175
MySQL 184
Oracle 195
PostgreSQL 203
Progress OpenEdge 210
Salesforce 256
SQL Server 218
Sybase 232
Windows Azure 218

Greenplum, getTypeInfo() 249
Group By clause 141

H
Having clause 141
help, online 14

I
importing statements into the statement pool 352
IN predicate 160
Informix, getTypeInfo() method 175
Initial Check clause 111
initial pool size 332
InputStream object (DataDirect Spy) 327–328
insensitive cursors

performance implications 272
Insert 132
Insert statement

Apache Hive, driver for 88
inserting rows

with DataDirect Test 313
integer literals 149
Interfaces, JDBC 17
Intersect operator 143

J
Java logging (Salesforce)

components 365
JDBC API logger 366
SQL engine logger 366
using 365
Web service adapter logger 367

JDBC
functionality supported 17
interfaces 17
JVM compatibility 17
methods supported 17
versions supported 17

375Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Index

JDBC API logger (Salesforce) 366
JDBC Driver Manager, specifying SpyAttributes
connection property with 325
JDBC extensions 12, 71
join in a From clause 139
JTA support

transaction
model, choosing for performance 275

JTA transaction support
managing commits 274

JVM
JDBC compatibility 17
properties file 367

K
keyset-driven cursors, performance implications 272

L
library, documentation 13
LIKE escape character for wildcards escape sequence
289
Limit clause 145
literals

about 148
arguments, using parameter markers 270
binary 150
character string 149
date/time 150
escape sequences 278
integer 149
numeric 150

LOBs support
executing a query with DataDirect Test 319

log for DataDirect Spy, using 357
logging

JVM properties file 367
logging, Java (Salesforce)

components 365
JDBC API logger 366
SQL engine logger 366
using 365
Web service adapter logger 367

logical operators 93, 153
long data, retrieving and performance 268

M
maximum idle time 332
maximum pool size 332
maximum pool size behavior 333
MBean name, registering 350
metadata methods, minimizing use of 266

methods
Array interface 18
Blob interface 18
CallableStatement interface 19
Clob interface 30
Connection interface 31
ConnectionEventListener interface 36
ConnectionPoolDataSource interface 36
DatabaseMetaData interface 36
DataSource interface 45
Driver interface 45
ExtConnection class 80
ExtDatabaseMetaData class 85
ExtLogControl class 85
ParameterMetaData interface 46
PooledConnection interface 47
PooledConnectionDataSource interface 340
PooledConnectionDataSourceFactory interface 340
PreparedStatement interface 47
Ref interface 52
ResultSet interface 52
ResultSetMetaData interface 62
RowSet interface 63
SavePoint interface 64
Statement interface 64
StatementEventListener interface 68
Struct interface 68
XAConnection interface 68
XADataSource interface 69
XAResource interface 69

minimum pool size 332
Minus operator 143
MySQL, getTypeInfo() 184

N
network timeout (SQL Server)

getting 81
setting 84

Next Value For clause 116
numeric literals 150

O
object

Connection
ExtLogControl interface 358
managing connections 274
transaction model 275

DataSource
connection pooling 331, 335–336

DDBulkLoad, methods 73
ExtConnection, methods 84
ExtControl, methods 85
ExtDatabaseMetaData, methods 85
InputStream (DataDirect Spy) 327–328

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4376

Index

object (continued)
Long (DB2) 55
pooled data source 335
PooledConnectionDataSource

connecting with 338
connection pooling 335–336, 340
ConnectionPoolMonitor 345
creating 335–336, 340

PreparedStatement
using Statement object instead of 270

Reader (DataDirect Spy) 327–328
Reference, connection pooling 340–341
ResultSet

database metadata 266
generating 266
updating data 275

Statement
using instead of PreparedStatement object 270
using multiple 274

using addBatch() instead of PreparedStatement 271
OpenEdge, See Progress OpenEdge
operators

arithmetic 92, 151
comparison 151
concatenation 92, 151
logical 93, 153
precedence 153
relational 92

Oracle, getTypeInfo() method 195
Order By clause 144
outer join escape sequence, example 287

P
parameter markers, using as arguments to stored
procedures 270
parameter metadata

returning with DataDirect Test 307
ParameterMetaData interface, methods 46
performance optimization

auto generated keys, retrieving 273
batches, using instead of prepared statements 271
commits, managing 274
connection

management 274
pooling 274

database metadata methods 266
designing JDBC applications 273
get methods, using effectively 272
getBestRowIdentifier() 275
result sets, retrieving 269
retrieving long data 268
scrollable cursors 269
selecting JDBC objects and methods 270
transaction model, choosing 275
update methods of the ResultSet object 275

performance optimization (continued)
updating data 275

Persist clause 111
PooledConnection interface, methods 47
PooledConnectionDataSource interface, methods 340
PooledConnectionDataSource object

connecting with 338
ConnectionPoolMonitor 345
creating 335–336, 340

PooledConnectionDataSourceFactory interface, methods
340
poolEntries() method 348
PostgreSQL, getTypeInfo() 203
predicate

EXISTS 160
IN 160
UNIQUE 160

prepared statement pooling, performance optimization
274
prepared statement, executing with DataDirect Test 297
prepared statements

using batches instead of 271
PreparedStatement interface, methods 47
PreparedStatement object

performance
implications of using Statement object instead
270
of prepared statement pool 274

prepared statement pooling 274
using Statement object instead of 270

Primary Key clause 123
procedure call 289
product documentation 13
Progress OpenEdge, getTypeInfo() 210
properties file for Java logging (Salesforce)

driver 368

R
Reader object (DataDirect Spy) 327–328
reauthentication

enabling in DataDirect Connection Pool Manager
333
using with the DataDirect Connection Pool Manager
333

Ref interface, methods 52
Reference object

using to create a PooledConnectionDataSource
object 340

Referencing clause 110
Refresh Cache (EXT) 134
Refresh Interval clause 110
Refresh Schema (EXT) 135
registering MBean name 350
relational operators 92
Rename clause 107

377Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Index

result sets
deleting rows with DataDirect Test 311
inserting rows with DataDirect Test 311
scrolling through a result set with DataDirect Test
302
updating rows with DataDirect Test 311

result sets, scrollable
performance optimization 269

ResultSet interface, methods 52
ResultSet object

database metadata 266
generating 266
updating data 275

ResultSetMetaData interface, methods 62
RowSet interface, methods 63

S
Salesforce

getTypeInfo() 256
Java logging 365
Java logging components 365
JDBC API logger 366
Remote Object Mapping 135
SQL engine logger 366
Web Service adapter logger 367

SavePoint interface, methods 64
savepoints

establishing with DataDirect Test 308
scalar functions 278
search patterns, avoiding 267
Select clause 136
Select statement

executing with DataDirect Test 296
sensitive cursors

performance implications 272
server-side RPCs 270
Set Checkpoint Defrag 145
Set Logsize 146
setEnableLogging(), using to turn on and off DataDirect
Spy logging 358
setting the network timeout (SQL Server) 84
SQL

expressions
driver for Apache Hive 91

SQL engine logger (Salesforce) 366
SQL escape sequences

date, time, timestamp 278
LIKE escape character for wildcards 289
outer join 287
procedure call 289
scalar functions 278

SQL expressions 147
SQL Server

getTypeInfo() method 218

SQL Server (continued)
network timeout

getting 81
setting 84

SQL statements
Alter Cache 98
Alter Index 100
Alter Sequence 100
Alter Session 101
Alter Table 102
Checkpoint 108
Create Cache (EXT) 108
Create Index 115
Create Sequence 115
Create Table 116
Create View 127
Delete 128
Drop Cache 129
Drop Index 129
Drop Sequence 130
Drop Table 131
Drop View 131
Explain Plan 132
Insert 132
Refresh Cache 134
Refresh Schema 135
Select 135
Set Checkpoint Defrag 145
Set Logsize 146
SQL expressions 147
Update 146

Statement interface, methods 64
Statement object

Connection object association 274
using instead of PreparedStatement object 270
using multiple 274
when to use 270

statement pool
clearing statements 352
export file, generating 353
freezing and unfreezing 353
importing statements to 352

statement pool export file
example 364
generating 364

Statement Pool Monitor
accessing with DataDirect-specific methods 348
classes and interfaces 353
poolEntries() method 348

statement pooling
statement pool export file 364
troubleshooting problems 364

StatementEventListener interface, methods 68
stored procedures

escape sequences 289
parameter markers as arguments, using 270

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4378

Index

Struct interface, methods 68
subqueries

Apache Hive, driver for 91
correlated 161
overview 159

subquery in a From clause 140
support

online help 14
technical support 14

Sybase, getTypeInfo() method 232
System.out, logging JDBC calls to using DataDirect Spy
328

T
Technical Support 14
time literal escape sequence 278
timestamp literal escape sequence 278
tracing, enabling for Pool Manager 335
transactions , See JTA support
troubleshooting

application problems 357
connection pooling problems 360
statement pooling problems 364

turning on and off DataDirect Spy logging 358
Type 4 11
Type 5 11

U
unary operator 150

understanding the maximum pool size 333
unfreezing the statement pool 353
Union operator 142
Unique clause 123
UNIQUE predicate 160
updatable result sets, DataDirect Test 311
Update 146
updating rows

with DataDirect Test 316
using

DataDirect Spy log 357
DataDirect Statement Pool Monitor 12
JMX API 350
Wrapper methods 72

W
Web service adapter logger (Salesforce) 367
Where clause 140
Windows Azure

getTypeInfo() method 218
Wrapper methods 72

X
XAConnection interface, methods 68
XADataSource interface, methods 69
XAResource interface, methods 69

379Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4

Index

Progress® DataDirect Connect® Series for JDBC™: Reference: Version 5.1.4380

Index

	Notices
	Copyright

	Table of Contents
	Preface
	About This Reference
	What Is Progress DataDirect Connect Series for JDBC?
	Using This Reference
	About the Product Documentation
	Typographical Conventions
	Contacting Technical Support

	JDBC Support
	JDBC and JVM Compatibility
	Supported Functionality
	Array
	Blob
	CallableStatement
	Clob
	Connection
	ConnectionEventListener
	ConnectionPoolDataSource
	DatabaseMetaData
	DataSource
	Driver
	ParameterMetaData
	PooledConnection
	PreparedStatement
	Ref
	ResultSet
	ResultSetMetaData
	RowSet
	SavePoint
	Statement
	StatementEventListener
	Struct
	XAConnection
	XADataSource
	XAResource

	JDBC Extensions
	Using JDBC Wrapper Methods to Access JDBC Extensions
	DatabaseMetaData Interface (Salesforce Driver)
	DDBulkLoad Interface
	ExtConnection Interface
	ExtDatabaseMetaData Interface
	ExtLogControl Class

	Supported SQL Functionality and Extensions for The Driver for Apache Hive
	Data Definition Language (DDL)
	Insert
	Selecting Data With the Driver
	Select List
	Between Clause
	Column Name Qualification

	From Clause
	Group By Clause
	Having Clause
	Order By Clause
	For Update Clause
	Set Operators
	Subqueries

	SQL Expressions
	Constants
	Numeric Operators
	Character Operator
	Relational Operators
	Logical Operators
	Functions

	Restrictions

	Supported SQL Statements and Extensions for the Salesforce Driver
	Alter Cache (EXT)
	Relational Caches

	Alter Index
	Alter Sequence
	Alter Session (EXT)
	Alter Table
	Altering a Remote Table
	Add Clause: Columns
	Add Clause: Constraints
	Drop Clause: Columns

	Altering a Local Table
	Add Clause: Columns
	Add Clause: Constraints
	Drop Clause: Columns
	Drop Clause: Constraints
	Rename Clause

	Checkpoint
	Create Cache (EXT)
	Relational Caches
	Referencing Clause
	Refresh Interval Clause
	Initial Check Clause
	Persist Clause
	Enabled Clause
	Call Limit Clause
	Filter Clause

	Create Index
	Create Sequence
	Next Value For Clause

	Create Table
	Creating a Remote Table
	Column Definition for Remote Tables
	Constraint Definition for Remote Tables
	Foreign Key Clause

	Creating a Local Table
	Column Definition for Local Tables
	Constraint Definition for Local Tables

	Create View
	Delete
	Drop Cache (EXT)
	Drop Index
	Drop Sequence
	Drop Table
	Drop View
	Explain Plan
	Insert
	Specifying an External ID Column

	Refresh Cache (EXT)
	Refresh Schema (EXT)
	Select
	Select Clause
	Aggregate Functions

	From Clause
	Join in a From Clause
	Subquery in a From Clause
	Where Clause
	Group By Clause
	Having Clause
	Union Operator
	Intersect Operator
	Except and Minus Operators
	Order By Clause
	Limit Clause

	Set Checkpoint Defrag
	Set Logsize
	Update
	SQL Expressions
	Column Names
	Literals
	Character String Literals
	Integer Literals
	Numeric Literals
	Binary Literals
	Date/Time Literals

	Operators
	Unary Operator
	Binary Operator
	Arithmetic Operators
	Concatenation Operator
	Comparison Operators
	Logical Operators
	Operator Precedence

	Functions
	Conditions
	Subqueries
	IN Predicate
	EXISTS Predicate
	UNIQUE Predicate
	Correlated Subqueries

	getTypeInfo()
	DB2 Driver
	Informix Driver
	MySQL Driver
	Oracle Driver
	PostgreSQL Driver
	Progress OpenEdge Driver
	SQL Server Driver
	Sybase Driver
	The Driver for Apache Hive
	Greenplum Driver
	Salesforce Driver

	Designing JDBC Applications for Performance Optimization
	Using Database Metadata Methods
	Minimizing the Use of Database Metadata Methods
	Avoiding Search Patterns
	Using a Dummy Query to Determine Table Characteristics

	Returning Data
	Returning Long Data
	Reducing the Size of Returned Data
	Choosing the Right Data Type
	Retrieving Result Sets

	Selecting JDBC Objects and Methods
	Using Parameter Markers as Arguments to Stored Procedures
	Using the Statement Object Instead of the PreparedStatement Object
	Using Batches Instead of Prepared Statements
	Choosing the Right Cursor
	Using get Methods Effectively
	Retrieving Auto Generated Keys

	Managing Connections and Updates
	Managing Connections
	Managing Commits in Transactions
	Choosing the Right Transaction Model
	Using updateXXX Methods
	Using getBestRowIdentifier

	SQL Escape Sequences for JDBC
	Date, Time, and Timestamp Escape Sequences
	Scalar Functions
	Outer Join Escape Sequences
	LIKE Escape Character Sequence for Wildcards
	Procedure Call Escape Sequences

	Using DataDirect Test
	DataDirect Test Tutorial
	Configuring DataDirect Test
	Starting DataDirect Test
	Connecting Using DataDirect Test
	Connecting Using a Data Source
	Connecting Using Database Selection

	Executing a Simple Select Statement
	Executing a Prepared Statement
	Retrieving Database Metadata
	Scrolling Through a Result Set
	Batch Execution on a Prepared Statement
	Returning ParameterMetaData
	Establishing Savepoints
	Updatable Result Sets
	Deleting a Row
	Inserting a Row
	Updating a Row

	Retrieving Large Object Data

	Tracking JDBC Calls with DataDirect Spy
	Enabling DataDirect Spy
	Using the JDBC Driver Manager
	Using JDBC Data Sources
	DataDirect Spy Attributes

	Connection Pool Manager
	About JDBC Connection Pools
	Configuring the Connection Pool
	Understanding the Maximum Pool Size
	Using Reauthentication with the Pool Manager

	Checking the Pool Manager Version
	Enabling Pool Manager Tracing
	Using a DataDirect Connection Pool
	Creating a Driver DataSource Object
	Creating the Connection Pool

	Connecting Using a Connection Pool
	Closing the Connection Pool
	DataDirect Connection Pool Manager Interfaces
	PooledConnectionDataSourceFactory
	PooledConnectionDataSource
	ConnectionPoolMonitor

	Statement Pool Monitor
	Using DataDirect-Specific Methods to Access the Statement Pool Monitor
	Using the poolEntries Method
	Generating a List of Statements in the Statement Pool

	Using JMX to Access the Statement Pool Monitor
	Importing Statements into a Statement Pool
	Clearing All Statements in a Statement Pool
	Freezing and Unfreezing the Statement Pool
	Generating a Statement Pool Export File
	DataDirect Statement Pool Monitor Interfaces and Classes
	ExtStatementPoolMonitor Class
	ExtStatementPoolMonitorMBean Interface

	Troubleshooting
	Troubleshooting Your Application
	Turning On and Off DataDirect Spy Logging
	DataDirect Spy Log Example

	Troubleshooting Connection Pooling
	Enabling Pool Manager Tracing
	Pool Manager Trace File Example

	Troubleshooting Statement Pooling
	Generating a Statement Pool Export File
	Statement Pool Export File Example

	Using Java Logging (Salesforce)
	Logging Components
	JDBC API Logger
	SQL Engine Logger
	Web Service Adapter Logger

	Configuring Logging
	Using the JVM
	Using the Driver

	Glossary
	authentication
	bulk load
	client authentication
	client load balancing
	connection pooling
	connection retry
	connection URL
	DataDirect Connection Pool Manager
	DataDirect DB2 Package Manager
	DataDirect Spy
	DataDirect Test
	data source
	Driver Manager
	failover
	index
	isolation level
	J2EE
	JDBC data source
	JNDI
	JTA
	Kerberos
	load balancing
	locking level
	NTLM authentication
	OS authentication
	reauthentication
	resource adapter
	Secure Socket Layer
	SSL client and server authentication
	Unicode
	user ID and password authentication

	Index

