
Locking

 Locking

Progress® Version 9.1D SQL-92 Server
Edition 1, March 2003

Locking

2

Contents

INTRODUCTION.. 3
LOCKS ... 3
TRANSACTIONS...4

WHAT IS DEFINED IN THE 1992 SQL STANDARD ... 4

LOCK LEVEL .. 7

LOCK MODE ... 7

HOW LOCK LEVELS AND LOCK MODES INTERACT TO PROVIDE THE BEHAVIOR
DESCRIBED IN THE 1992 SQL STANDARD .. 8

MATCHING THE TRANSACTION ISOLATION LEVELS BEHAVIORS:... 8
LOCK ACQUISITION .. 10

INFORMATION SCHEMA LOCK .. 10
TABLE/RECORD LOCK... 10
AN EXAMPLE:.. 11
IN A NUTSHELL: ... 11

LOCK VISIBILITY.. 11

OTHER USEFUL INFORMATION... 14
AUTO-COMMIT AND THE INFORMATION SCHEMA LOCK .. 14
TABLE LOCKS AND THE 4GL.. 14

Locking

3

Introduction

The intent of this white paper is to convey information regarding database locks as they apply to
transactions in general and the more specific case of how they are implemented by the Progress® SQL-92
server. We’ll begin with a general overview discussing why locks are needed and how they affect
transactions. Transactions and locking are outlined in the SQL standard so no introduction would be
complete without discussing the guidelines set forth here. Once we have a grasp on the general concepts of
locking we’ll dive into lock modes, such as table and record locks and their effect on different types of
database operations. Next, the subject of timing will be introduced, when locks are obtained and when they
are released. From here we’ll get into lock contention and deadlocks, which are multiple operations or
transactions all attempting to get locks on the same resource at the same time. And to conclude our
discussion on locking we’ll take a look at how we can see locks in our application so we know which
transactions obtain which types of locks. Finally, this white paper describes differences in locking behavior
between previous and current versions of Progress and differences in locking behavior when both 4GL and
SQL92 clients are accessing the same resources.

To avoid being redundant, this white paper makes reference to Progress product documentation, which is
available at www.progress.com/documentation.

Locks

Why do we lock database objects?

The answer to why we lock is simple; if we didn’t there would be no consistency. Consistency provides us
with successive, reliable, and uniform results without which applications such as banking and reservation
systems, manufacturing, chemical, and industrial data collection and processing could not exist. Imagine a
banking application where two clerks attempt to update an account balance at the same time: one credits the
account and the other debits the account. While one clerk reads the account balance of $200 to credit the
account $100, the other clerk has already completed the debit of $100 and updated the account balance to
$100. When the first clerk finishes the credit of $100 to the balance of $200 and updates the balance to
$300 it will be as if the debit never happened. Great for the customer; however the bank wouldn’t be in
business for long.

What objects are we locking?

What database objects get locked is not as simple to answer as why they’re locked. From a user
perspective, objects such as the information schema1, user tables, and user records are locked while being
accessed to maintain consistency. There are other lower level objects that require locks that are handled by
the RDBMS; however, they are not visible to the user. For the purposes of this discussion we will focus on
the objects that the user has visibility of and control over.

1 Schema as defined by the Webster’s dictionary reads as follows, “A diagrammatic representation; an outline or model”. As applied
to a Relational Database Management Systems, schema is a term used to represent the metadata; tables, fields and indexes. The term
“schema” used unqualified in the context of SQL may have a different meaning depending on whether or not you’re a seasoned SQL
user. A SQL Catalog is a container for one or more schema, at a minimum there is the Information Schema that contains the systems
base tables or metadata. There can also be one or more user defined schema contained within a SQL Catalog. For the seasoned
Progress 4GL user there is only one schema, a singular object representing the metadata; tables, fields and indexes. For this discussion
we well refer to this object by its correct SQL name, the Information Schema. For more information about the SQL Catalog, and the
SQL Schema please refer to Melton and Simon’s book entitled “Understanding the New SQL: A Complete Guide”.

Locking

4

Transactions

Now that we know why and what we lock, let’s talk a bit about when we lock. A transaction is a unit of
work; there is a well-defined beginning and end to each unit of work. At the beginning of each transaction
certain locks are obtained and at the end of each transaction they are released. During any given
transaction, the RDBMS2, on behalf of the user, can escalate, deescalate, and even release locks as required.
We’ll talk about this in more detail later when we discuss lock modes. The aforementioned is all-true in the
case of a normal, successful transaction; however in the case of an abnormally terminated transaction
things are handled a bit differently. When a transaction fails, for any reason, the action performed by the
transaction needs to be backed out, the change undone. To accomplish this most RDBMS use what are
known as “save points3.” A save point marks the last known good point prior to the abnormal termination;
typically this is the beginning of the transaction. It’s the RDBMS’s job to undo the changes back to the
previous save point as well as ensuring the proper locks are held until the transaction is completely undone.
So, as you can see, transactions that are in the process to be undone (rolled back) are still transactions
nonetheless and still need locks to maintain data consistency.

Locking certain objects for the duration of a transaction ensures database consistency and isolation from
other concurrent transactions, preventing the banking situation we described previously. Transactions are
the basis for the ACID 4properties:

• ATOMICITY guarantees that all operations within a transaction are performed or none of them are
performed.

• CONSISTENCY is the concept that allows an application to define consistency points and
validate the correctness of data transformations from one state to the next.

• ISOLATION guarantees that concurrent transactions have no effect on each other.

• DURABILITY guarantees that all transaction updates are preserved.

What is Defined in the 1992 SQL Standard

The 1992 SQL standard does not specify how a SQL implementation should provide for data consistency
and concurrency via various locking schemes. However it does specify what the expected behavior should
be for active transactions in different situations. Each behavior is identified with a specific name referred to
as: “Transaction isolation level” and offers varying degrees of isolation and concurrency while accessing a
database.

To clearly identify expected behaviors for each transaction isolation levels, the 1992 SQL standard starts by
describing different issues occurring while accessing data in a concurrent mode. These issues are called
phenomena and are permitted or prevented by each isolation level resulting in varying degrees of isolation
and concurrency.

2 Relational Database Management System, a type of database management system (DBMS) that stores data in the form of related
tables

3 The ability of the client application to set user defined save points is not part of the SQL92 standard however it is an extension to the
core SQL99 standard. The Progress database development team is currently giving thought to implementing user defined save points
in a future release.

4 For a full explanation and discussion on the ACID database properties please refer to Jim Gray and Andreas Reuter’s book entitled
“Transaction Processing: Concepts and Techniques”.

Locking

5

The three phenomena described in the 1992 SQL standard are as follows:

Dirty read — Occurs when one user is updating / inserting a record while a different user is reading it, but
that work is not committed to the database.

Hypotheses: We assume there is no transaction control mechanism used by the RDBMS which
could mean that the RDBMS is not locking any records while a user is accessing the database.

Scenario:

User 1 executes:
INSERT INTO pub.State (state, state_name, region)
VALUES (‘AB', 'Abcdefghij’, ‘ABCD');

User 2 executes:
SELECT * FROM pub.State

User 2 sees: state ‘AB’
User 1 executes:

ROLLBACK WORK
User 2 has seen data that did not really exist.

Conclusion: To prevent this phenomenon, User 2 must guarantee that the records being accessed
are not currently being accessed from a different transaction started by a different user.

Non repeatable read — Occurs when one user is repeating a read operation on the same records but has
updated values.

Hypotheses: We assume there is no transaction control mechanism used by the RDBMS or that
the RDBMS is able to check that a record about to be retrieved is used in a transaction held by a
different user. This could mean that the RDBMS is not locking any records while a user is
accessing the database, or that there is a mechanism to check if a record is locked by a different
user.

Scenario:

User 1 executes:
SELECT * FROM pub.State

User 2 executes:
UPDATE pub.State
SET state_name = 'hello world'
WHERE state = ‘AK’;
COMMIT WORK;

User 1 re-executes:
SELECT * FROM pub.State

User 1 has now updated records in the result set.
Conclusion: To prevent this phenomenon, the RDBMS needs to use some sort of mechanism
preventing any other user from updating the records User 1 has already read. This mechanism
should be used until User 1 indicates that the read operation is complete.

Locking

6

Phantom Read — Occurs when one user is repeating a read operation on the same records but has new
records in his result set.

Hypotheses: We assume there is no transaction control mechanism used by the RDBMS or that
the RDBMS is able to check that a record about to be retrieved is used in a transaction held by a
different user and that it holds locks on records retrieved until the user indicates that the
transaction is complete. This could mean that the RDBMS is not locking any records while a user
is accessing the database, or that there is a mechanism to check if a record is locked by a different
user and that there is a mechanism holding locks on a record until the end of the transaction.

Scenario:

User 1 executes:
SELECT * FROM pub.State

User 2 executes:
INSERT INTO pub.State (state, state_name, region)
VALUES (‘AB', 'Abcdefghij’, ‘ABCD');
COMMIT WORK;

User 1 re-executes:
SELECT * FROM pub.State

User 1 has new records in the result set.
Conclusion: To prevent this phenomenon, the RDBMS needs to use some sort of mechanism
preventing any other user from inserting records in the table User 1 is currently accessing. This
mechanism should be used until User 1 indicates that the read operation is complete.

In order to allow or prevent each of the above phenomena, 4 isolation levels are clearly identified:

• READ UNCOMMITTED (also called “dirty read”) — When this isolation level is used, a
transaction can read uncommitted data that later may be rolled back. The standard requires that a
transaction that uses this isolation level can only fetch data but can’t update, delete, or insert data.

• READ COMMITTED— With this isolation level dirty reads are not possible, but if the same row
is read repeatedly during the same transaction, its contents may be changed or the entire row may
be deleted by other transactions.

• REPEATABLE READ — This isolation level guarantees that a transaction can read the same row
many times and it will remain intact. However, if a query with the same search criteria (the same
WHERE clause) is executed more than once, each execution may return different set of rows. This
may happen because other transactions are allowed to insert new rows that satisfy the search
criteria or update some rows in such way that they now satisfy the search criteria.

• SERIALIZABLE — This isolation level guarantees that none of the above happens. In addition, it
guarantees that transactions that use this level will be completely isolated from other transactions.

Locking

7

Table 1 gives a clear overview of what is described above. It identifies which phenomena are either
permitted or prevented by each isolation level.

Table 1

 Dirty Read Dirty Read Dirty Read

Read Uncommitted Permitted Permitted Permitted

Read Committed Prevented Permitted Permitted

Repeatable Read Prevented Prevented Permitted

Serializable Prevented Prevented Prevented

Note that the isolation levels are ordered according to the phenomena they either permit or prevent —the
first one (READ UNCOMMITTED) is the isolation level providing the highest level of concurrency but
with the lowest level of consistency. Each subsequent level provides at least as much data consistency as
the one before but will result in less concurrency.

As a general rule, the more data consistency that is provided by the isolation level used from an application,
the less concurrency is allowed between this application and other applications connected to the same
database.

Lock Level

In order to provide a reasonable level of concurrency, locking is performed in a hierarchy that requires
several lock modes across the levels of the hierarchy. For the purpose of this discussion there are three
levels in our locking hierarchy, records, tables and information schema. A record is at the lower level, a
table is at the medium level, and the information schema is at the highest level.

Lock Mode

In general, lock modes are prioritized tokens in a queue that indicate what action is being taken. The intent
to update a given record requires a different mode of lock than to actually update the record; likewise the
intent to read a record requires a different mode of lock than to actually read the record. Lock modes are
needed to facilitate concurrency and provide consistency; they indicate intent and are used to stage lock
requests. Lock requests are generated on the user’s behalf as a result of executing a transaction, such as a
database read or write.

Progress provides 6 lock modes that are described as follows:

• NO-LOCK (NL) — you have no intentions of performing an update and accuracy of the resulting
set of data is not important.

• INTENT SHARE (IS) — you intend to share-lock objects at the next lower level of granularity
for this object (table). That is, you intend to get share locks on the rows of this table.

• INTENT EXCLUSIVE (IX) — you intend to exclusive-lock objects at the next lower level of
granularity for this object (table). That is, you intend to get exclusive locks on the rows of this
table.

Locking

8

• SHARED (S) — you want a share-lock on the object. Getting a share-lock on an object means that
you implicitly get a share-lock on all of the objects that this object contains, i.e. all of the rows for
this table.

• SHARED WITH INTENT EXCLUSIVE (SIX) — you want a share-lock on the table so no one
else can modify, delete, or add rows except for you.

• EXCLUSIVE (X) — you want an exclusive-lock on the object. Getting an exclusive lock on an
object means that you implicitly get an exclusive lock on all of the objects that this object
contains, i.e. all of the rows for this table.

Note: Since rows (records) are the lowest level in the locking hierarchy, the intent locks (IS, IX and SIX)
do not apply. At the information schema level there is currently no need to use any of these intents locks. In
other words, they are only used at the table level.

Table 2 depicts the lock compatibility matrix for these different lock modes. A checkmark indicates the
requested lock can be granted. A cross indicates that the requested and the granted modes are not
compatible so the requested lock could not be granted on the object.

This matrix applies to lock requests made by a user different than the holder of the lock.

Table 2

Granted Mode

Lock Mode None IS IX S SIX X

None

IS

IX

S

SIX

Requested
Mode

X

How lock levels and lock modes interact to provide the behavior
described in the 1992 SQL standard

Matching the transaction isolation levels behaviors:

Table 3 describes how the Progress SQL-92 server makes use of this locking scheme implementation in
order to match the desired behavior described in the 1992 SQL standard.

This information is also provided here for a better understanding of how a caller might make use of this
table lock implementation; however it is not intended to dictate how it is used.

Locking

9

Note that the information in the table applies to the requested lock strength based on the transaction
isolation level in effect for a given transaction. This table does not take into consideration lock upgrades
possibly resulting in a different lock strength actually being applied.

Table 3

 Insert / Update / Delete record
Operation Fetch / Select record Operation

Isolation Level
Information

Schema
Lock

Table
Lock

Record
Lock

Information
Schema

Lock

Table
Lock

Record
Lock

Serializable S SIX X S S S

Repeatable Read S IX X S IS S

Read Committed S IX X S IS S

Read Uncommitted S NL NL S NL NL

Notes:

• As Table 3 indicates, there are no table or record locks acquired when the transaction isolation
level is Read Uncommitted. In the Read Uncommitted transaction isolation level you maximize
concurrency but may also read dirty data. Depending on your application, this may be acceptable.

• The primary difference between the Read Committed and Repeatable Read transaction isolation
levels is that while in Repeatable Read, individual record locks are held for the duration of the
transaction. For example, if your fetch criteria include all companies in the state of Idaho, each
record in the result set will remain locked until all of the records meeting the criteria have been
read. In the Read Committed transaction isolation level the record locks are released once the
record has been read. So, as the name indicates, you will only read committed records, which may
change once your result set is complete. This is known as a phantom read. If you were to re-read
the same records, it’s possible that records that were once visible no longer exist. To avoid this
behavior, use the Repeatable Read transaction isolation level keeping in mind that as you progress
towards the Serializable transaction isolation level you reduce your application’s concurrency
because locks are held for a longer duration.

• In the Serializable transaction isolation level a share lock on a table is held for the duration of the
transaction, preventing any other transaction from updating the table.

• Any SQL operation that modifies the information schema automatically gets upgraded to the
serializable transaction isolation level regardless of the user’s current transaction setting.

Now that we’ve discussed lock modes / levels and how they affect transactions, let’s take a look at lock
acquisition, that is, how and when locks are acquired.

Locking

10

Lock Acquisition

How and when are locks acquired? So far we’ve talked about locking in general, how the SQL standard
interprets locks via behavior, lock modes, and database objects that get locks applied to them such as
tables, records, and information schema. Knowing which objects get locked and when goes a long way
towards helping you develop applications that are more robust and predictable.

Since SQL uses the transaction isolation level exclusively to determine what lock mode is applied to which
objects, it’s extremely important to know how this translates into object locks and lock modes. This is the
only way to communicate your application’s intentions to the SQL engine. As you can see from Table 3
above, the strongest locks are held when the transaction isolation level is Serializable and the weakest locks
are held when the transaction isolation level is Read Uncommitted. This also translates into application
concurrency—the higher the transaction isolation level, the less concurrent your application will be.

Information Schema Lock

Every operation performed by the SQL server operates inside a transaction. Operating inside a transaction
provides the ability to provide for the ACID properties we expect from a database. For each transaction, a
information schema share-lock is acquired at the beginning of the transaction and released at the end of the
transaction. This is true regardless of whether or not the transaction is committed successfully or terminated
abnormally. Acquiring the information schema share-lock protects the information schema from being
altered while the transaction is active. During the life of an active connection there can be many individual
transactions begun and ended depending on the operations being performed. The first transaction is begun
upon connection to the SQL server and is used to read the information schema. Once the information
schema has been read, the transaction is ended. Each successive operation will then begin and end a
transaction requiring, at a minimum, a share-lock on the information schema. While the connection is quiet,
there is no active transaction and therefore no lock held on the information schema. If an operation is being
performed that will modify the information schema, an exclusive lock on the information schema will be
requested. For the exclusive lock on the information schema to be granted, there can be no other active
transactions in the database. Once granted, the information schema lock is upgraded from a share to an
exclusive lock. While this transaction is active, no other transaction can begin because the share-lock on the
information schema cannot be granted while there is an outstanding exclusive lock on the information
schema. Keep in mind that the lock on the information schema is above and beyond any locks obtained on
tables and records via transaction isolation level settings for data manipulation operations.

Table/Record Lock

Lock acquisition for tables and records is straightforward given Tables 2 and 3 above and the information
we covered so far regarding transactions. To get a record lock of sufficient strength for the operation being
performed, you must first have a table lock of sufficient strength. Regardless of the current transaction
isolation level, if the application’s intent is to perform an operation other than a fetch, the lock mode will be
in effect strengthened for the duration of that operation. That is to say, you are not prohibited from creating
or updating records based on the transaction isolation level. It is the responsibility of the SQL
implementation’s RDBMS to provide sufficient lock escalation when an operation is being performed that
requires lock upgrades.

What happens when two transactions attempt to update an object at the same time? Let’s take a look at our
banking example where two clerks, C1 and C2, are updating a customer’s bank account balance at the same
time. To update the customer’s bank account balance requires an exclusive lock on two tables; the accounts
table, T1, where the customer information is located and the transaction table, T2, where debits and credits
are recorded. To perform the update C1 gets an exclusive lock on T1, and C2 gets an exclusive lock on T2.

Locking

11

C1 now tries to lock T2, and C2 tries to lock T1. Neither can proceed because each holds a resource locked
exclusively that’s required to perform the update. This is called a deadlock and is handled by the RDBMS
via a lock wait timeout. The rule imposed by the SQL RDBMS is that a transaction will wait for a resource
to become available for five seconds at which point the application will need to retry the operation. A well-
designed application could prevent this type of deadlock by requiring a lock on T1 prior to requesting a
lock on T2. This example was contrived to illustrate a deadlock scenario and does not represent any kind of
programming best practices.

That’s it in a nutshell. Simply put, the RDBMS translates SQL transaction isolation level intended behavior
into locks on information schema, tables, and records of varying strengths to give the desired results.

An example:

Assuming that you want to have the behavior associated with the “Read Committed” transaction isolation
level (as defined by the 1992 SQL standard), locking a record requires that a lock gets placed at the
information schema level to prevent any information schema modification to occur while accessing the
record. It also requires that an intent share (IS) lock be obtained on a table, before locking the record itself.
Thus to share-lock a row of a table requires you to get a shared intent lock on the table and a shared lock on
the information schema before locking a row in the table. Similarly, before getting an exclusive lock on a
row of a table, you must get a shared lock on the information schema and an exclusive intent lock on the
table first.

This also means (depending on your transaction isolation level) that:

• To get a Share (S) lock on a record, the table must be locked with an Intent Share (IS) lock or
stronger. If the table holds a Share (S), Shared with Intent Exclusive (SIX), or Exclusive (X) lock,
then record locks need not be obtained at all for that table.

• To get an Exclusive (X) lock on a record, the table must hold an Intent Exclusive (IX) lock or
stronger. If the table holds an Exclusive (X) lock then record locks need not be obtained at all for
that table.

In a nutshell:

The locking protocol follows two simple rules:

• Acquire locks from the top down. Acquire an information schema lock and then a table lock
before acquiring any record locks.

• Release locks from the bottom up. Release record locks before releasing table locks and at last
the information schema lock.

Now that we’ve discussed lock modes, levels, and lock acquisition and how they affect transactions, let’s
take a look at lock visibility, that is, how we can see locks that have been acquired.

Lock Visibility

How can the user see what locks are in effect at any given time? There are a couple ways to accomplish this
with the tools available in any Progress installation. See the Progress Database Administration Guide and
Reference for details. PROMON is probably the most widely used utility for monitoring locks. Using

Locking

12

Virtual System Tables (VSTs) is also an option. Basic PROMON provides “canned” reports that you can
use to get a feel for what is happening with regards to locks.

The “Record Locking Table” option displays locks that are being held at any given time. This information
can be used to see the locks that are currently being held in an attempt to resolve a locking conflict. The
information presented includes the ID and Name of the user holding the lock, the lock chain ID, the Record
ID, the Table number and the type of lock, and a flag indicating the state of the lock. Additional
information on this and other PROMON tables can be found in the Progress Database Administration
Guide and Reference. Here is sample output:

Record Locking Table:
Usr Name Chain # Rec-id Table Lock Flags
 44 jfj REC 105 103 2 SHR L
 41 jfj REC 105 103 2 EXCL Q H
 44 jfj REC 269 10240 2 SHR L
 44 jfj REC 270 10241 2 SHR L
 44 jfj REC 307 10278 2 SHR L
 44 jfj REC 686 10657 2 SHR L
 44 jfj REC 707 705 2 SHR L
 44 jfj REC 742 740 2 SHR L
 44 jfj REC 771 769 2 SHR L
 44 jfj REC 772 770 2 SHR L
 44 jfj REC 774 772 2 SHR L
 44 jfj REC 803 801 2 SHR L
 44 jfj REC 836 834 2 SHR L
 44 jfj REC 837 835 2 SHR L
 44 jfj REC 867 865 2 SHR L
 42 jfj REC 890 20832 4 EXCL L
 44 jfj REC 900 898 2 SHR L
 44 jfj REC 903 901 2 SHR L
 44 jfj REC 941 10912 2 SHR L

The “Locking and Waiting Statistics” option displays statistics regarding locks. The information in this
report is cumulative for the life of the process. This information can give you a feel for your system’s
concurrency with regards to locks. The first two lines display cumulative locking statistics. The information
presented includes the Lock, whether a Lock or Wait, the User ID and Name of the user, the Record ID, the
number of times a Transaction Lock was issued, and the total number of times a Information schema lock
was obtained for that lock type. Here is sample information that this table provides:

Locking and Waiting:
Type Usr Name Record Trans Schema
Lock 999 TOTAL... 89796 824 0
Wait 999 TOTAL... 142 4 0
Lock 0 jfj 0 0 0
Wait 0 jfj 0 0 0
Lock 41 jfj 39466 311 0
Wait 41 jfj 25 1 0
Lock 42 jfj 19216 228 0
Wait 42 jfj 30 0 0
Lock 43 jfj 13832 103 0
Wait 43 jfj 30 1 0
Lock 44 jfj 8579 87 0
Wait 44 jfj 19 0 0
Lock 45 jfj 5550 45 0
Wait 45 jfj 22 2 0
Lock 46 jfj 0 0 0
Wait 46 jfj 0 0 0
Lock 47 jfj 2808 23 0
Wait 47 jfj 11 0 0
Lock 48 jfj 345 27 0
Wait 48 jfj 5 0 0

Locking

13

The “Transaction Control” option displays information regarding individual transactions. The information
in this table is useful for identifying when transactions are active and which user is holding them. The
information presented includes the User ID and Name of the user with the transaction, the Transaction ID,
the Date and Time the transaction began, the Ready to commit state, whether a transaction is Limbo, and
other Coordinator information with regards to distributed transactions.. Here is sample information that this
table provides:

Transaction Control:
Usr Name Trans Login Time R-comm? Limbo? Crd? Coord Crd-task
 41 jfj 8008 09/20/02 12:47 no no no 0
 42 jfj 7939 09/20/02 12:47 no no no 0
 43 jfj 7556 09/20/02 12:48 no no no 0
 44 jfj 7973 09/20/02 12:48 no no no 0
 45 jfj 7987 09/20/02 12:48 no no no 0
 47 jfj 7988 09/20/02 12:48 no no no 0
 48 jfj 7650 09/20/02 12:49 no no no 0
 49 jfj 7985 09/20/02 12:49 no no no 0
 50 jfj 8001 09/20/02 12:49 no no no 0

In addition to the basic PROMON displays, there are a couple of other displays under the PROMON R&D
menu. You can access the R&D Menu by typing “r&d” at the main PROMON menu. There are activity,
status, and other lock displays that can help you understand what is happening with regards to locking on
the system.

Another option that provides information on locks is Progress Virtual System Tables (VSTs). VSTs are
provided so that users can “roll their own” reports from data collected in the applicable VST. Of interest to
anyone looking to understand more about locking are the following VSTs:

Lock Table Activity (_ActLock) — Displays lock-table activity, including the number of share, exclusive,
upgrade, Rec Get, and redundant requests; the number of exclusive, Rec Get, share, and upgrade grants; the
number of exclusive, Rec Get, share, and upgrade waits; the number of downgrades, transactions
committed, cancelled requests, and database up time.

Lock Table Status File (_Lock) — Displays the status of the lock table, including the user number, the user
name, lock type, record ID, number, flags, and chain.

Lock Request File (_LockReq) — Displays information about lock requests, including user name and
number, record locks and waits, information schema locks and waits, and transaction locks and waits.

Record Locking Table File (_UserLock) — Displays the contents of the record locking table, such as user
name, chain, number, record ID, lock type, and flags.

Locking

14

Other Useful Information

Based on a number of responses to customer inquiries, this section should provide additional insight into
the specifics of why locking behavior for the SQL-92 server appears as it does.

Auto-Commit and the Information Schema Lock

In Progress Version 9.1D, the scope of the information schema lock for SQL92 was changed. Prior to
Version 9.1D, a share-lock on the information schema was obtained upon connection and held for the
duration of the connection. This meant that no information schema modifications could be performed while
users other than the one performing the modification were connected to the database. This posed
complications for customers using connection pools in that they would have to shut down the connection
pool to perform an information schema operation. Beginning with Version 9.1D, the information schema
share-lock has been moved from the scope of a connection to the scope of a transaction. No longer is the
lock held for the duration of the connection.

Another aspect of the information schema lock is the auto-commit behavior. There have been a number of
inquiries regarding the information schema lock being held even though there are no active clients. One
way to be sure of this is to look at the Transaction Control Table using PROMON. Because of the way
auto-commit works, if your client uses auto-commit they will always be inside of a transaction. With auto-
commit active each time a statement is executed the previous statement is committed. This relieves the user
of the task of committing every statement. So, unless you explicitly commit your transactions, or turn auto-
commit off, it’s likely that you will run into this situation.

Table Locks and the Progress 4GL

Prior to the introduction of the SQL92 Server and the background work started with Progress Version 9.0A,
the Progress database engine did not supported table locks. Consistency and concurrency were maintained
with record locks. Because SQL relies on table and record locks to carry out the intent of transaction
isolation levels, table locks were implemented in the database engine. Now, both the 4GL and SQL clients
encounter table locks while executing transactions. From the 4GL point of view, table locks are somewhat
transparent, and based on our previous discussion regarding table and record locking we already know how
they affect the SQL client.

When we described the banking example above, we mentioned locking conflicts and what happens when
two operations request the same resource at the same time. This is known as a dead lock. The SQL client
will wait on a resource for five seconds before giving up, at which point the operation would need to be re-
tried. The five-second wait is currently hard-coded and applies to all SQL clients. The Progress database
development team is currently giving thought to changing this value in a future release. For 4GL clients,
there is a Lock Wait Timeout (–lkwtmo) parameter that specifies how long a client should wait for a
resource. The current default value for the Lock Wait Timeout parameter is thirty minutes. Given that a
SQL client can only wait five seconds and a 4GL client could wait as long as 30 minutes, if a SQL client
has a lock on a table for which a 4GL client also has requested a lock, the SQL client will timeout and give
up waiting long before the 4GL client.

The reason for providing this information is to make our customers aware that there are behavioral
differences when both 4GL and SQL clients are active on the same database. Knowing that the Lock Wait
Timeout values between the 4GL and SQL are different and that the 4GL is subject to table locks when
SQL clients are active may help explain unfamiliar or unexpected locking behavior.

Locking

15

Worldwide and North American Headquarters

Progress Software Corporation, 14 Oak Park, Bedford, MA 01730 USA Tel: 781 280 4000 Fax: 781 280 4095

Europe/Middle East/Africa Headquarters

Progress Software Europe B.V. Schorpioenstraat 67 3067 GG Rotterdam, The Netherlands Tel: 31 10 286 5700 Fax: 31 10
286 5777

Latin American Headquarters

Progress Software Corporation, 2255 Glades Road, One Boca Place, Suite 300 E, Boca Raton, FL 33431 USA Tel: 561 998
2244 Fax: 561 998 1573

Asia/Pacific Headquarters

Progress Software Pty. Ltd., 1911 Malvern Road, Malvern East, 3145, Australia Tel: 61 39 885 0544 Fax: 61 39 885 9473

Progress is a registered trademark of Progress Software Corporation. All other trademarks, marked and not marked, are the
property of their respective owners.

www.progress.com

Specifications subject to change without notice.

© 2003 Progress Software Corporation.

All rights reserved.

